Вызов удаленных процедур (rpc - Remote Procedure Call). Удаленные процедуры

Идея вызова удаленных процедур (Remote Procedure Call - RPC) состоит в расширении хорошо известного и понятного механизма передачи управления и данных внутри программы, выполняющейся на одной машине, на передачу управления и данных через сеть. То есть, клиентское приложение обращается к процедурам, хранящимся на сервере. Средства удаленного вызова процедур предназначены для облегчения организации распределенных вычислений. Наибольшая эффективность использования RPC достигается в тех приложениях, в которых существует интерактивная связь между удаленными компонентами с небольшим временем ответов и относительно малым количеством передаваемых данных. Такие приложения называются RPC-ориентированными.

Характерными чертами RPC являются:

Асимметричность, то есть одна из взаимодействующих сторон является инициатором;

Синхронность, то есть выполнение вызывающей процедуры приостанавливается с момента выдачи запроса и возобновляется только после возврата из вызываемой процедуры.

Существует несколько реализаций процедур удаленного вызова в различных операционных системах. В операционной системе UNIX используется процедура под одноименным названием (Remote Procedure Call - RPC). Данная процедура внедрена в ядро системы. Ее выполнение обеспечивается протоколом RPC. В операционных системах Windows удаленный вызов процедур начал развиваться на базе механизмов OLE, которые постепенно развились в технологию DCOM (Distributed Component Object Model). Данная технология позволяет создавать достаточно мощные распределенные сетевые вычислительные среды. В технологии используются фирменные протоколы Microsoft.

Механизм работы RPC

Перед непосредственным вызовом на клиентской и серверной стороне должны быть созданы специальные структуры (процедуры, файлы) - это так называемые клиентский стаб (stub) и серверный скелетон (skeleton), которые необходимы для корректной работы RPC. Чаще всего, они генерируются автоматически специальными утилитами по основному коду программы.

При удаленном вызове процедуры в распределенной системе происходят следующие действия:

1. Процедура клиента вызывает стаб как обычную процедуру. Стаб упаковывает параметры (маршализация, marshaling).

2. Стаб обращается к ядру ОС.

3. Ядро посылает сообщение на удаленную машину (ядру удаленного ПК).

4. Передача полученного сообщения скелетону серверного процесса.

5. Распаковка параметров (демаршализация, unmarshaling). Вызов требуемой процедуры.

6. Процедура на сервере выполняется. Возвращает результаты скелетону.

7. Скелетон упаковывает результат.

8. Передача результата ядру.

9. Ядро сервера передает сообщение по сети ядру клиента.

10. Ядро клиента обращается к стабу. Стаб распаковывает полученный результат.

11. Передача от стаба клиентскому процессу.

Служба "Удаленный вызов процедур (RPC)" в ОС Windows

Для того чтобы понять важность механизма удаленного вызова процедур, можно рассмотреть хотя бы список утилит и служб, которые не работают без RPC в ОС Windows 2000. Фактически, отключение службы RPC в указанной среде приводит к краху всей системы. Итак, от службы "Удаленный вызов процедур (RPC)" зависят:

1. Telnet - позволяет удаленному пользователю войти в систему и запустить программы консоли с помощью командной строки.

2. Windows Installer - устанавливает, удаляет или восстанавливает программное обеспечение в соответствии с инструкциями файлов MSI.

3. Агент политики IPSEC - управляет политикой IP-безопасности и запускает ISAKMP/Oakley (IKE) и драйвер IP-безопасности.

4. Диспетчер очереди печати - загружает в память файлы для последующей печати.

5. Защищенное хранилище - обеспечивает защищенное хранение секретных данных, таких как закрытые ключи, для предотвращения несанкционированного доступа служб, процессов или пользователей.

6. Инструментарий управления Windows - предоставляет информацию об управлении системой.

7. Клиент отслеживания изменившихся связей - посылает оповещения о файлах, перемещенных между томами NTFS в сетевом домене.

8. Координатор распределенных транзакций - координация транзакций, распределенных по нескольким базам данных, очередям сообщений, файловым системам или другим защищенным диспетчерам ресурсов транзакций.

9. Маршрутизация и удаленный доступ - предлагает услуги маршрутизации организациям в локальной и глобальной сетях.

10. Планировщик заданий - позволяет выполнять программы в назначенное время.

11. Сетевые подключения - управляет объектами папки "Сеть и удаленный доступ к сети", отображающей свойства локальной сети и подключений удаленного доступа.

12. Система событий COM+ - автоматическое распространение событий подписавшимся компонентам COM.

13. Служба индексирования - индексирование для быстрого поиска.

14. Служба сообщений - посылает и получает сообщения, переданные администраторами или службой оповещений.

15. Служба факсов - помогает отправлять и принимать факсимильные сообщения.

16. Съемные ЗУ - управляет съемными носителями, дисками и библиотеками.

17. Телефония - обеспечивает поддержку Telephony API (TAPI) для программ, управляющих телефонным оборудованием и голосовыми IP-подключениями на этом компьютере, а также через ЛВС - на серверах, где запущена соответствующая служба.

RMI-приложения

Вызов Удаленных Методов Remote Method Invocation (RMI) является реализацией идей RPC для языка программирования Java.

RMI - продукт компании JavaSoft, разработанный для Java и интегрированный в JDK 1.1 и выше. RMI реализует распределенную модель вычислений и обеспечивает средства коммуникации между Java-программами (виртуальными Java-машинами), выполняющимися на одном или нескольких удаленных компьютерах. RMI позволяет клиентским и серверным приложениям через сеть вызывать методы клиентов/серверов, выполняющихся на виртуальных Java-машинах. Основное преимущество RMI заключается в том, что он предоставляет программисту программируемый интерфейс более высокого уровня, который позволяет передавать ссылку на удаленный объект в качестве аргумента или возвращать ее в качестве результата. RMI требует, чтобы на обоих концах соединения выполнялись Java-программы. Сетевое соединение достигается с использованием TCP/IP-протокола. Архитектура RMI приведена на рис. "Архитектура RMI".

Client Stub (переходник для клиента - некая сущность на клиенте, которая обеспечивает функции приема/передачи), и Server Skeleton (переходник для сервера - некая сущность на сервере, которая обрабатывает удаленные вызовы) порождены от общего интерфейса, но различаются тем, что Client Stub служит просто для подсоединения к RMI Registry, а Server Stub используется для связи непосредственно с функциями сервера.

RMI является в действительности новым видом брокера объектных запросов, который строится на объектной модели Java. Как и ORB, RMI вводит пять ключевых моментов:

1. Позволяет перемещать код в дополнение к данным.

2. Практически обеспечивает безопасность выполнения загружаемого кода.

3. Позволяет передавать объекты по значению.

4. Использует Java как язык определения интерфейса и как язык реализации.

5. Использует именующую схему на базе унифицированного указателя ресурсов Uniform Resource Locator (URL).

При этом производится преобразование объектов в последовательную форму - в поток байтов, передаваемых как параметр в сообщении с помощью протокола TCP/IP.

Интерфейсы RMI можно разделить на 4 категории:

Ядро RMI - определяет интерфейсы, необходимые для выполнения вызовов удаленных методов;

Служба именования RMI - определяет интерфейсы и классы, позволяющие получить ссылки на серверные объекты по имени;

Безопасность RMI - определяет новый менеджер безопасности RMI и интерфейсы загрузчика классов (RMI расширяет механизм загрузки классов Java по требованию на загрузку стаба);

Маршализация (упаковка запроса, включая параметры, возвращаемое значение, сам запрос, в стандартный формат, пригодный для передачи по сети) - RMI определяет интерфейсы нижнего уровня для маршализации удаленных объектов, которые используются для записи объектов Java в поток и для чтения объекта из потока.

JavaSoft и OMG работают над сближением объектных моделей RMI и CORBA. Это сближение происходит в двух областях:

RMI через IIOP. JavaSoft разрабатывает версию RMI, которая работает поверх транспорта IIOP. IIOP предоставляет следующие преимущества для RMI:

1. Встроенную поддержку для распространения транзакций.

2. Поддержку брандмауэра на основе ORB с помощью заместителя IIOP (без HTTP-туннелирования).

3. Взаимодействие с объектами, написанными на других языках через подмножество RMI/IDL.

4. Открытый стандарт распределенных объектов.

RMI/IDL. Стандарт CORBA Java в IDL является стандартом сближения CORBA/RMI. Он позволяет программистам Java определять интерфейсы CORBA c помощью семантики Java RMI вместо CORBA IDL. Компилятор использует эту семантику для автоматического создания CORBA IDL, стабов и скелетонов. Подмножество RMI/IDL позволяет программам RMI вызываться многоязычными клиентами CORBA с помощью IIOP; он также позволяет RMI-программам вызывать объекты CORBA, написанные на других языках.

RMI через IIOP кажется хорошим решением для системы CORBA/Java, поскольку объединяет две мощные технологии. Основным достоинством RMI является то, что с его помощью можно наиболее быстро и просто создать небольшую распределенную систему в чисто Java-среде. Основным недостатком RMI является невозможность интегрирования этого механизма с существующими приложениями.

Сравнение распределенных и нераспределенных Java-программ

Разработчики RMI стремились сделать использование распределенных Java-объектов таким же, как и использование локальных объектов. В следующей таблице перечислены некоторые важные отличия.

Интерфейсы в RMI

Архитектура RMI основана на одном важном принципе: определение поведения и реализация этого поведения считаются разными понятиями. RMI дает возможность разделить и выполнить на разных JVM код, определяющий поведение, и код, реализующий поведение.

Это соответствует требованиям распределенных систем, в которых клиенты знают об определениях служб, а серверы предоставляют эти службы. Конкретно в RMI определение удаленной службы кодируется при помощи интерфейса Java. Реализация удаленной службы кодируется в классе. Таким образом, ключ к пониманию RMI - помнить, что интерфейсы определяют поведение, а классы определяют реализацию.

Помните, что интерфейсы Java не содержат исполняемого кода. RMI поддерживает два класса, реализующих один и тот же интерфейс. Первый класс является реализацией поведения и исполняется на сервере. Второй класс работает как промежуточный интерфейс для удаленной службы и исполняется на клиентской машине.

Клиентская программа вызывает методы прокси-объекта, RMI передает запрос на удаленную JVM и направляет его в реализацию объекта. Любые возвращаемые из реализации значения передаются назад в прокси-объект и затем в клиентскую программу.

Уровни архитектуры RMI

Реализация RMI, по существу, состоит из трех абстрактных уровней. Первый - это уровень заглушки и скелета, расположенный непосредственно перед разработчиком. Этот уровень перехватывает вызовы методов, произведенные клиентом при помощи переменной-ссылки на интерфейс, и переадресует их в удаленную службу RMI.

Следующий уровень - уровень удаленной ссылки. Этот уровень понимает, как интерпретировать и управлять ссылками на удаленные объекты служб. В JDK 1.1 этот уровень соединяет клиентов с удаленными объектами служб, которые исполняются на сервере. Это соединение является связью типа один к одному (однонаправленное соединение). В Java 2 SDK этот уровень был расширен поддержкой активации пассивных удаленных объектов при помощи технологии Remote Object Activation.

Транспортный уровень основан на соединениях TCP/IP между сетевыми машинами. Он обеспечивает основные возможности соединения и некоторые стратегии защиты от несанкционированного доступа. При использовании уровневой архитектуры каждый из уровней может быть изменен или заменен без воздействия на остальную систему. Например, транспортный уровень может быть заменен протоколом UDP/IP без изменения остальных уровней.

Поиск удаленных объектов

При рассмотрении архитектуры RMI возникает вопрос: "Как клиент находит удаленную службу RMI?". Клиенты находят удаленные службы, используя службу имен или каталогов. Как клиент может найти службу, используя службу? Но это действительно так. Служба имен или каталогов исполняется на хорошо известном хосте и имеет известный номер порта (хорошо известный означает, что все в организации знают об этом).

RMI может использовать много различных служб каталогов, включая Java Naming and Directory Interface (JNDI). RMI и сама включает в себя простую службу, называемую реестром RMI, rmiregistry. Реестр RMI работает на каждой машине, содержащей объекты удаленных служб и принимающей запросы на обслуживание, по умолчанию используя порт 1099. На хосте программа сервера создает удаленную службу, предварительно создавая локальный объект, реализующий эту службу. Затем она экспортирует этот объект в RMI. Как только объект экспортирован, RMI создает службу прослушивания, ожидающую соединения с клиентом и запроса службы. После экспорта, сервер регистрирует объект в реестре RMI, используя общедоступное имя.

На стороне клиента к реестру RMI доступ обеспечивается через статический класс Naming. Он предоставляет метод lookup(), который клиент использует для запросов к реестру. Метод lookup() принимает URL, указывающий на имя хоста и имя требуемой службы. Метод возвращает удаленную ссылку на обслуживающий объект. URL принимает следующий вид:

rmi:// [:] /
где host_name - это имя, распознаваемое в локальной сети (LAN), или DNS-имя в сети Internet. Необходимо только указать name_service_port, если служба имен исполняется на порте, отличном от принимаемого по умолчанию 1099.

Использование RMI

Рабочая RMI-система состоит из нескольких частей: определение интерфейсов для удаленных служб, реализация удаленных служб, файлы заглушки и скелета, сервер, предоставляющий удаленные службы, служба имен RMI, дающая возможность клиентам найти удаленные службы, поставщик файла классов (HTTP или FTP-сервер), клиентская программа, которая нуждается в удаленных службах.

Если предположить, что RMI-система уже спроектирована, для ее создания необходимо выполнить следующие шаги:

1. Написать и откомпилировать Java-код для интерфейсов.

2. Написать и откомпилировать Java-код для классов реализации.

3. Создать файлы классов заглушки и скелета из классов реализации.

4. Написать Java-код программы хоста для удаленного обслуживания.

5. Разработать Java-код для клиентской программы RMI.

6. Установить и запустить RMI-систему.

Пример RMI - приложения

Первым шагом является написание и компилирование Java-кода для интерфейсов служб. Интерфейс Calculator определяет все удаленные возможности, предлагаемые службой:

public interface Calculator extends java.rmi.Remote {
public long add(long a, long b) throws java.rmi.RemoteException;
public long sub(long a, long b) throws java.rmi.RemoteException;
public long mul(long a, long b) throws java.rmi.RemoteException;
public long div(long a, long b) throws java.rmi.RemoteException;
}

Обратите внимание, что этот интерфейс расширяет интерфейс Remote, и в сигнатуре каждого метода определяется, что он может генерировать объект RemoteException. Вообще, объект называется удаленным, если он реализует интерфейс Remote. "Реализует" в смысле заголовка (public interface Calculator extends java.rmi.Remote), никаких методов в этом интерфейсе нет. Это - метка. Теперь необходимо написать реализацию удаленной службы. Ниже приведен класс CalculatorImpl:

public class CalculatorImpl extends java.rmi.server.UnicastRemoteObject
implements Calculator {
// Реализации должны иметь явный конструктор для того, чтобы объявить
// исключительную ситуацию RemoteException
public CalculatorImpl()
throws java.rmi.RemoteException {
super();
}
public long add(long a, long b) throws java.rmi.RemoteException {
return a + b;
}
public long sub(long a, long b) throws java.rmi.RemoteException {
return a - b;
}
public long mul(long a, long b) throws java.rmi.RemoteException {
return a * b;
}
public long div(long a, long b) throws java.rmi.RemoteException {
return a / b;
}
}

Класс реализации использует Unicast RemoteObject для присоединения к системе RMI. В данном примере класс реализации непосредственно расширяет UnicastRemoteObject. Это не является обязательным требованием. Класс, не расширяющий UnicastRemoteObject, может использовать свой метод exportObject() для присоединения к RMI. Если класс расширяет UnicastRemoteObject, он должен обеспечить конструктор, объявляющий, что он может сгенерировать объект RemoteException. Если этот конструктор вызывает метод super(), он активизирует код в UnicastRemoteObject, который выполняет RMI-соединение и инициализацию удаленного объекта.

Удаленные службы RMI должны быть помещены в процесс сервера. Класс CalculatorServer является очень простым сервером, предоставляющим простые элементы для размещения.

import java.rmi.Naming;

public class CalculatorServer {
public CalculatorServer() {
try {
Calculator c = new CalculatorImpl();
Naming.rebind("
rmi://localhost:1099/
CalculatorService", c);
} catch (Exception e) {
System.out.println("Trouble: " + e);
}
}
new CalculatorServer();
}
}

Исходный код клиента, к примеру, может быть следующий:

import java.rmi.Naming;
import java.rmi.RemoteException;
import java.net.MalformedURLException;
import java.rmi.NotBoundException;
public class CalculatorClient {
public static void main(String args) {
try {
Calculator c = (Calculator)
Naming.lookup(
"rmi://remotehost
/CalculatorService");
System.out.println(c.sub(4, 3));
System.out.println(c.add(4, 5));
System.out.println(c.mul(3, 6));
System.out.println(c.div(9, 3));
}
catch (MalformedURLException murle) {
System.out.println();
System.out.println(
"MalformedURLException");
System.out.println(murle);
}
catch (RemoteException re) {
System.out.println();
System.out.println(
"RemoteException");
System.out.println(re);
}
catch (NotBoundException nbe) {
System.out.println();
System.out.println(
"NotBoundException");
System.out.println(nbe);
}
catch (
java.lang.ArithmeticException
ae) {
System.out.println();
System.out.println(
"java.lang.ArithmeticException");
System.out.println(ae);
}
}
}

Теперь можно запускать систему. Сделать это можно (после получения соответствующих class-файлов и размещения их на одном или разных ПК) так:

1. Запустить реестр RMI ("rmiregistry").

2. Запустить сервер ("java CalculatorServer").

3. Запустить клиент ("java CalculatorClient").

Если все пройдет хорошо, вы увидите следующую информацию:

1
9
18
3

Вот и все - работающая система RMI готова. Даже если вы запустили три консоли на одном и том же компьютере, RMI использует стек протоколов TCP/IP вашей сети для взаимодействия между тремя отдельными JVM. Это вполне законченная RMI-система.

Распространение классов RMI

Для запуска RMI-приложения файлы поддерживающих классов должны быть расположены в таких местах, где бы они могли быть найдены сервером и клиентами.

Для сервера должны быть доступны (для загрузчика классов) классы:

Реализации удаленных служб

Скелеты для классов реализации (только для серверов, основанных на JDK 1.1)

Заглушки для классов реализации

Все остальные классы сервера

Для клиента должны быть доступны (для загрузчика классов) классы:

Определения интерфейса удаленной службы

Заглушки для классов, реализующих удаленную службу

Классы сервера для объектов, используемых клиентом (таких, как возвращаемое значение)

Все остальные классы клиента

Если вы знаете, какие файлы должны быть размещены на различных узлах сети, то сделать их доступными для каждого загрузчика классов JVM не составит труда.

Распределенная сборка мусора

Одним из преимуществ программирования для платформы Java является отсутствие беспокойства о распределении памяти. JVM имеет автоматический сборщик мусора, который освобождает память, занимаемую любым объектом, который больше не используется исполняющейся программой. Одним из требований к разработке RMI была ее бесшовная интеграция в язык программирования Java, включая и сборку мусора. Разработка эффективного сборщика мусора для одной машины является тяжелой задачей; разработка распределенного сборщика мусора является очень тяжелой задачей. RMI-система обеспечивает подсчитывающий ссылки алгоритм распределенной сборки мусора, основанный на сетевых объектах, используемых в Modula-3. Эта система при работе следит за тем, какие клиенты запросили доступ к удаленным объектам, выполняющимся на сервере. Когда появляется ссылка, сервер помечает объект как "грязный", а когда клиент удаляет ссылку, объект помечается как "чистый".

Интерфейс к DGC (распределенный сборщик мусора) скрыт на уровне заглушек и скелетов. Однако удаленный объект может реализовать интерфейс java.rmi.server.Unreferenced и получить уведомление через метод unreferenced, когда нет больше ни одного клиента, содержащего живую ссылку. В дополнение к механизму подсчета ссылок живая ссылка в клиенте имеет срок аренды с указанным временем. Если клиент не обновляет соединение к удаленному объекту до истечения срока аренды, ссылка считается мертвой и удаленный объект может быть утилизирован сборщиком мусора. Время аренды управляется системным свойством java.rmi.dgc.leaseValue. Его значение указывается в миллисекундах и по умолчанию равно 10 минутам. Из-за такой семантики сборки мусора, клиент должен быть подготовлен для работы с объектами, которые могут "исчезать".

Заключение

Технология Remote Method Invocation (RMI), впервые представленная в JDK 1.1, продвинула сетевое программирование на более высокий уровень. Хотя RMI относительно проста в использовании и не лишена недостатков, она является необыкновенно мощной технологией и раскрывает перед обычным Java-программистом полностью новую парадигму - мир распределенных объектных вычислений.




Программы, общающиеся через сеть, нуждаются в механизме связи. На нижнем уровне по поступлении пакетов подается сигнал, обрабатываемый сетевой программой обработки сигналов. На верхнем уровне работает механизм rendezvous (рандеву), принятый в языке Ада. В NFS используется механизм вызова удаленных процедур (RPC), в котором клиент взаимодействует с сервером (см. Рисунок 1). В соответствии с этим процессом клиент сначала обращается к процедуре, посылающей запрос на сервер. По прибытии пакета с запросом сервер вызывает процедуру его вскрытия, выполняет запрашиваемую услугу, посылает ответ, и управление возвращается клиенту.

Интерфейс RPC можно представить состоящим из трех уровней:

  1. Верхний уровень полностью "прозрачен". Программа этого уровня может, например, содержать обращение к процедуре rnusers(), возвращающей число пользователей на удаленной машине. Вам не нужно знать об использовании механизма RPC, поскольку вы делаете обращение в программе.
  2. Средний уровень предназначен для наиболее общих приложений. RPC-вызовами на этом уровне занимаются подпрограммы registerrpc() и callrpc(): registerrpc() получает общесис темный код, а callrpc() исполняет вызов удаленной процедуры. Вызов rnusers() реализуется с помощью этих двух подпрограмм.
  3. Нижний уровень используется для более сложных задач, изменяющих умолчания на значения параметров процедур. На этом уровне вы можете явно манипулировать гнездами, используемыми для передачи RPC-сообщений.

Как правило, вам следует пользоваться верхним уровнем и избегать использования нижних уровней без особой необходимости.

Несмотря на то, что в данном руководстве мы рассматриваем интерфейс только на Си, обращение к удаленным процедурам может быть сделано из любого языка. Работа механизма RPC для организации взаимодействия между процессами на разных машинах не отличается от его работы на одной машине.

RPC (Remote Procedure Call, Сервис вызова удаленных процедур) представляет собой интерфейс между удаленными пользователями и определенными программами хоста, которые запускаются по запросам этих пользователей. Сервис RPC какого-либо хоста, как правило, предоставляет клиентам комплекс программ. Каждая из таких программ состоит, в свою очередь, из одной или нескольких удаленных процедур. Например, сервис удаленной файловой системы NFS, который построен на вызовах RPC, может состоять только из двух программ: например, одна программа взаимодействует с высокоуровневыми пользовательскими интерфейсами, а другая - с низкоуровневыми функциями ввода-вывода.

В каждом вызове удаленной процедуры участвуют две стороны: активный клиент, который отправляет запрос вызова процедуры на сервер, и сервер, который отправляет клиенту ответ.

Примечание. Следует иметь в виду, что термины "клиент" и "сервер" в данном случае относятся к определенной транзакции Конкретный хост или программное обеспечение (процесс или программа) могут работать как в роли клиента, так и в роли сервера. Например, программа, которая обеспечивает работу сервиса удаленных процедур, в то же время может быть клиентом в работе с сетевой файловой системой.

Протокол RPC построен на модели вызовов удаленных процедур, подобному механизму вызовов локальных процедур. При вызове локальной процедуры вы помещаете аргументы в определенное место памяти, в стек или переменные окружения и передаете управление процессом по определенному адресу. После завершения работы вы читаете результаты по конкретному адресу и продолжаете свой процесс.

В случае работы с удаленной процедурой, основное отличие состоит в том, что вызов удаленной функции обслуживают два процесса: клиентский процесс и серверный процесс.

Процесс клиента отправляет серверу сообщение, в которое включены параметры вызываемой процедуры и ожидает ответного сообщения с результатами ее работы. При получении ответа результат считывается, и процесс продолжает работу. Со стороны сервера процесс-обработчик вызовов находится в состоянии ожидания, и, при поступлении сообщения, считывает параметры процедуры, выполняет ее, отправляет ответ и становится в состояние ожидания следующего вызова.

RPC-протокол не накладывает каких-либо требований на дополнительные связи между процессами и не требует синхронности выполняемых функций, т. е. вызовы могут быть асинхронными и взамонезависимыми, так что клиент во время ожидания ответа может выполнять другие процедуры. Сервер RPC может выделять для каждой функции отдельный процесс или виртуальную машину, поэтому, не дожидаясь окончания работы предыдущих запросов, сразу же может принимать следующие.

Однако между вызовами локальных и удаленных процедур есть несколько важных отличий:

  1. Обработка ошибок. Клиент в любом случае должен получать уведомление об ошибках, возникающих при вызовах удаленных процедур на сервере или в сети.
  2. Глобальные переменные. Поскольку сервер не имеет доступа к адресному пространству клиента, при вызовах удаленных процедур нельзя использовать скрытые параметры в виде глобальных переменных.
  3. Производительность. Скорость выполнения удаленных процедур, как правило на один или два порядка ниже скорости выполнения аналогичных локальных процедур.
  4. Аутентификация. Поскольку вызовы удаленных процедур происходят по сети, необходимо использовать механизмы аутентификации клиента.

Принципы построения протокола.

Протокол RPC может использовать несколько различных транспортных протоколов. В обязанности RPC-протокола входит только обеспечение стандартов и интерпретация передачи сообщений. Достоверность и надежность передачи сообщений целиком обеспечивается транспортным уровнем.

Однако RPC может контролировать выбор и некоторые функции транспортного протокола. В качестве примера взаимодействия между RPC и транспортным протоколом рассмотрим процедуру назначения RPC-порта работы прикладного процесса через RPC - Portmapper.

Эта функция динамически (по запросу) назначает соединению RPC определенный порт. Функция Portmapper используется довольно часто, поскольку набор зарезервированных для RPC транспортных портов ограничен, а количество процессов, которые потенциально могут одновременно работать очень высоко. Portmapper, например, вызывается при выборе портов взаимодействия клиента и сервера системы NFS.

Сервис Portmapper использует механизм широковещательных сообщений RPC на определенный порт - III. На этот порт клиент отправляет широковещательное сообщение запроса порта определенного сервиса RPC. Сервис Portmapper обрабатывает таксе сообщение, определяет адрес локального сервиса RPC и отправляет клиенту ответ. Сервис RPC Portmapper может работать как с TCP, так и с UDP-протоколами.

RPC может работать с различными транспортными протоколами, но никогда не дублирует их функции, т. е. если RPC работает поверх TCP, все заботы о надежности и достоверности соединения RPC возлагает на TCP. Однако, если протокол RPC установлен поверх UDP, он может обеспечивать дополнительные собственные функции обеспечения гарантированной доставки сообщений.

Примечание.

Прикладные задачи могут рассматривать RPC-протокол как определенную процедуру вызова функции по сети JSR (Jump Subroutine Instruction).

Для работы RPC-протокола необходимо выполнение следующих условий:

  1. Уникальная идентификации всех удаленно вызываемых процедур на данном хосте. RPC-запросы содержат три поля идентификаторов - номер удаленной программы (сервиса), номер версии удаленной программы и номер удаленной процедуры указанной программы. Номер программы назначается производителем сервиса, номер процедуры указывает на конкретную функцию данного сервиса
  2. Идентификация версии RPC-протокола. RPC-сообщения содержат поле версии RPC-протокола. Она используется для согласования форматов передаваемых параметров при работе клиента с различными версиями RPC.
  3. Предоставление механизмов аутентификации клиента на сервере. RPC-протокол обеспечивает процедуру аутентификации клиента в сервисе, и, в случае необходимости, при каждом запросе или отправке ответа клиенту. Кроме того, RPC позволяет использовать различные дополнительные механизмы безопасности.

RPC может использовать четыре типа механизмов аутентификации:

  • AUTH_NULL - без использования аутентификации
  • AUTH_UNIX - аутентификация по стандарту UNIX
  • AUTH_SHORT - аутентификация по стандарту UNIX с собственной структурой кодирования
  • AUTH_DES - аутентификация по стандарту DES
  1. Идентификация сообщений ответа на соответствующие запросы. Ответные сообщения RPC содержат идентификатор запроса, на основании которого они были построены. Этот идентификатор можно назвать идентификатором транзакции вызова RPC. Данный механизм особенно необходим при работе в асинхронном режиме и при выполнении последовательности из нескольких RPC-вызовов.
  2. Идентификация ошибок работы протокола. Все сетевые или серверные ошибки имеют уникальные идентификаторы, по которым каждый из участников соединения может определить причину сбоя в работе.

Структуры сообщений протокола

При передаче RPC-сообщений поверх транспортного протокола, несколько RPC-сообщений могут располагаться внутри одного транспортного пакета. Для того чтобы отделять одно сообщение от другого, используется маркер записи (RM - Record Marker). Каждое RPC-сообщение "маркируется" ровно одним RM.

RPC-сообщение может состоять из нескольких фрагментов. Каждый фрагмент состоит из четырех байт заголовка и (от 0 до 2**31-1) данных. Первый бит заголовка указывает, является ли данный фрагмент последним, а остальные 31 бит указывают длину пакета данных.

Структура RPC формально описана на языке описания и представления форматов данных - XDR с дополнениями, касающимися описания процедур. Можно даже сказать, что язык описания RPC является расширением XDR, дополненным работой с процедурами.

Структура RPC-пакета выглядит следующим образом:


Структура ответа (reply_body) может содержать либо структуру, передаваемую в случае ошибки (тогда она содержит код ошибки), либо структуру успешной обработки запроса (тогда она содержит возвращаемые данные).

Программный интерфейс высокого уровня.

Использование подпрограмм в программе - традиционный способ структурировать задачу, сделать ее более ясной. Наиболее часто используемые подпрограммы собираются в библиотеки, где могут использоваться различными программами. В данном случае речь идет о локальном (местном) вызове, т. е. и вызывающий, и вызываемый объекты работают в рамках одной программы на одном компьютере.

В случае удаленного вызова процесс, выполняющийся на одном компьютере, запускает процесс на удаленном компьютере (т. е. фактически запускает код процедуры на удаленном компьютере). Очевидно, что удаленный вызов процедуры существенным образом отличается от традиционного локального, однако с точки зрения программиста такие отличия практически отсутствуют, т. е. архитектура удаленного вызова процедуры позволяет сымитировать вызов локальной.

Однако если в случае локального вызова программа передает параметры в вызываемую процедуру и получает результат работы через стек или общие области памяти, то в случае удаленного вызова передача параметров превращается в передачу запроса по сети, а результат работы находится в пришедшем отклике.

Данный подход является возможной основой создания распределенных приложений, и хотя многие современные системы не используют этот механизм, основные концепции и термины во многих случаях сохраняются. При описании механизма RPC мы будем традиционно называть вызывающий процесс - клиентом, а удаленный процесс, реализующий процедуру, - сервером.

Удаленный вызов процедуры включает следующие шаги:

  1. Программа-клиент производит локальный вызов процедуры, называемой заглушкой (stub). При этом клиенту "кажется", что, вызывая заглушку, он производит собственно вызов процедуры-сервера. И действительно, клиент передает заглушке необходимые параметры, а она возвращает результат. Однако дело обстоит не совсем так, как это себе представляет клиент. Задача заглушки - принять аргументы, предназначаемые удаленной процедуре, возможно, преобразовать их в некий стандартный формат и сформировать сетевой запрос. Упаковка аргументов и создание сетевого запроса называется сборкой (marshalling).
  2. Сетевой запрос пересылается по сети на удаленную систему. Для этого в заглушке используются соответствующие вызовы, например, рассмотренные в предыдущих разделах. Заметим, что при этом могут быть использованы различные транспортные протоколы, причем не только семейства TCP/IP.
  3. На удаленном хосте все происходит в обратном порядке. Заглушка сервера ожидает запрос и при получении извлекает параметры - аргументы вызова процедуры. Извлечение (unmarshalling) может включать необходимые преобразования (например, изменения порядка расположения байтов).
  4. Заглушка выполняет вызов настоящей процедуры-сервера, которой адресован запрос клиента, передавая ей полученные по сети аргументы.
  5. После выполнения процедуры управление возвращается в заглушку сервера, передавая ей требуемые параметры. Как и заглушка клиента; заглушка сервера преобразует возвращенные процедурой значения, формируя сетевое сообщение-отклик, который передается по сети системе, от которой пришел запрос.
  6. Операционная система передает полученное сообщение заглушке клиента, которая, после необходимого преобразования, передает значения (являющиеся значениями, возвращенными удаленной процедурой) клиенту, воспринимающему это как нормальный возврат из процедуры.

Таким образом, с точки зрения клиента, он производит вызов удаленной процедуры, как он это сделал бы для локальной. То же самое можно сказать и о сервере: вызов процедуры происходит стандартным образом, некий объект (заглушка сервера) производит вызов локальной процедуры и получает возвращенные ею значения. Клиент воспринимает заглушку как вызываемую процедуру-сервер, а сервер принимает собственную заглушку за клиента.

Таким образом, заглушки составляют ядро системы RPC, отвечая за все аспекты формирования и передачи сообщений между клиентом и удаленным сервером (процедурой), хотя и клиент и сервер считают, что вызовы происходят локально. В этом-то и состоит основная концепция RPC - полностью спрятать распределенный (сетевой) характер взаимодействия в коде заглушек. Преимущества такого подхода очевидны: и клиент и сервер являются независимыми от сетевой реализации, оба они работают в рамках некой распределенной виртуальной машины, и вызовы процедур имеют стандартный интерфейс.

Передача параметров

Передача параметров-значений не вызывает особых трудностей. В этом случае заглушка клиента размещает значение параметра в сетевом запросе возможно, выполняя преобразования к стандартному виду (например, изменяя порядок следования байтов). Гораздо сложнее обстоит дело с передачей указателей, когда параметр представляет собой адрес данных, а не их значение. Передача в запросе адреса лишена смысла, так как удаленная процедура выполняется в совершенно другом адресном пространстве. Самым простым решением, применяемым в RPC, является запрет клиентам передавать параметры иначе, как по значению, хотя это, безусловно, накладывает серьезные ограничения.

Связывание (binding)

Прежде чем клиент сможет вызвать удаленную процедуру, необходимо связать его с удаленной системой, располагающей требуемым сервером. Таким образом, задача связывания распадается на две:

  1. Нахождение удаленного хоста с требуемым сервером
  2. Нахождение требуемого серверного процесса на данном хосте

Для нахождения хоста могут использоваться различные подходы. Возможный вариант - создание некоего централизованного справочника, в котором хосты анонсируют свои серверы, и где клиент при желании может выбрать подходящие для него хост и адрес процедуры.

Каждая процедура RPC однозначно определяется номером программы и процедуры. Номер программы определяет группу удаленных процедур, каждая из которых имеет собственный номер. Каждой программе также присваивается номер версии, так что при внесении в программу незначительных изменений (например, при добавлении процедуры) отсутствует необходимость менять ее номер. Обычно несколько функционально сход-ных процедур реализуются в одном программном модуле, который при запуске становится сервером этих процедур, и который идентифицируется номером программы.

Таким образом, когда клиент хочет вызвать удаленную процедуру, ему необходимо знать номера программы, версии и процедуры, предоставляющей требуемый сервис.

Для передачи запроса клиенту также необходимо знать сетевой адрес хоста и номер порта, связанный с программой-сервером, обеспечивающей требуемые процедуры. Для этого используется демон portmap(IM) (в некоторых системах он называется rpcbind(IM)). Демон запускается на хосте, который предоставляет сервис удаленных процедур, и использует общеизвестный номер порта. При инициализации процесса-сервера он регистрирует в portmap(IM) свои процедуры и номера портов. Теперь, когда клиенту требуется знать номер порта для вызова конкретной процедуры, он посылает запрос на сервер portmap(IM), который, в свою очередь, либо возвращает номер порта, либо перенаправляет запрос непосредственно серверу удаленной процедуры и после ее выполнения возвращает клиенту отклик. В любом случае, если требуемая процедура существует, клиент получает от сервера portmap(IM) номер порта процедуры, и дальнейшие запросы может делать уже непосредственно на этот порт.

Обработка особых ситуаций (exception)

Обработка особых ситуаций при вызове локальных процедур не представляет особой проблемы. UNIX обеспечивает обработку ошибок процессов таких как деление на ноль, обращение к недопустимой области памяти и т. д. В случае вызова удаленной процедуры вероятность возникновения ошибочных ситуаций увеличивается. К ошибкам сервера и заглушек добавляются ошибки, связанные, например, с получением ошибочного сетевого сообщения.

Например, при использовании UDP в качестве транспортного протокола производится повторная передача сообщений после определенного тайм-аута. Клиенту возвращается ошибка, если, спустя определенное число попыток, отклик от сервера так и не был получен. В случае, когда используется протокол TCP, клиенту возвращается ошибка, если сервер оборвал TCP-соединение.

Семантика вызова

Вызов локальной процедуры однозначно приводит к ее выполнению после чего управление возвращается в головную программу. Иначе дело обстоит при вызове удаленной процедуры. Невозможно установить, когда конкретно будет выполняться процедура, будет ли она выполнена вообще, а если будет, то какое число раз? Например, если запрос будет получен удаленной системой после аварийного завершения программы сервера, процедура не будет выполнена вообще. Если клиент при неполучении отклика после определенного промежутка времени (тайм-аута) повторно посылает запрос, то может создаться ситуация, когда отклик уже передается по сети, а повторный запрос вновь принимается на обработку удаленной процедурой. В этом случае процедура будет выполнена несколько раз.

Таким образом, выполнение удаленной процедуры можно характеризовать следующей семантикой:

  • Один и только один раз. Данного поведения (в некоторых случаях наиболее желательного) трудно требовать ввиду возможных аварий сервера.
  • Максимум раз. Это означает, что процедура либо вообще не была выполнена, либо была выполнена только один раз. Подобное утверждение можно сделать при получении ошибки вместо нормального отклика.
  • Хотя бы раз. Процедура наверняка была выполнена один раз, но возможно и больше. Для нормальной работы в такой ситуации удаленная процедура должна обладать свойством идемпотентности (от англ. idemponent). Этим свойством обладает процедура, многократное выполнение которой не вызывает кумулятивных изменений. Например, чтение файла идемпотентно, а добавление текста в файл - нет.

Представление данных

Когда клиент и сервер выполняются в одной системе на одном компьютере, проблем с несовместимостью данных не возникает. И для клиента и для сервера данные в двоичном виде представляются одинаково. В случае удаленного вызова дело осложняется тем, что клиент и сервер могут выполняться на системах с различной архитектурой, имеющих различное представление данных (например, представление значения с плавающей точкой, порядок следования байтов и т. д.)

Большинство реализаций системы RPC определяют некоторые стандартные виды представления данных, к которым должны быть преобразованы все значения, передаваемые в запросах и откликах.

Например, формат представления данных в RPC фирмы Sun Microsystems следующий:

  1. Порядок следования байтов - Старший - последний
  2. Представление значений с плавающей точкой - IEEE
  3. Представление символа - ASCII

Сеть

По своей функциональности система RPC занимает промежуточное место между уровнем приложения и транспортным уровнем. В соответствии с моделью OSI этому положению соответствуют уровни представления и сеанса. Таким образом, RPC теоретически независим от реализации сети, в частности, от сетевых протоколов транспортного уровня.

Программные реализации системы, как правило, поддерживают один или два протокола. Например, система RPC разработки фирмы Sun Microsystems поддерживает передачу сообщений с использованием протоколов TCP и UDP. Выбор того или иного протокола зависит от требований приложения. Выбор протокола UDP оправдан для приложений, обладающих следующими характеристиками:

  • Вызываемые процедуры идемпотентны
  • Размер передаваемых аргументов и возвращаемого результата меньше размера пакета UDP - 8 Кбайт.
  • Сервер обеспечивает работу с несколькими сотнями клиентов. Поскольку при работе с протоколами TCP сервер вынужден поддерживать соединение с каждым из активных клиентов, это занимает значительную часть его ресурсов. Протокол UDP в этом отношении является менее ресурсоемким

С другой стороны, TCP обеспечивает эффективную работу приложений со следующими характеристиками:

  • Приложению требуется надежный протокол передачи
  • Вызываемые процедуры неидемпонентны
  • Размер аргументов или возвращаемого результата превышает 8 Кбайт

Выбор протокола обычно остается за клиентом, и система по-разному организует формирование и передачу сообщений. Так, при использовании протокола TCP, для которого передаваемые данные представляют собой поток байтов, необходимо отделить сообщения друг от друга. Для этого например, применяется протокол маркировки записей, описанный в RFC1057 "RPC: Remote Procedure Call Protocol specification version 2", при котором в начале каждого сообщения помещается 32-разрядное целое число, определяющее размер сообщения в байтах.

По-разному обстоит дело и с семантикой вызова. Например, если RPC выполняется с использованием ненадежного транспортного протокола (UDP), система выполняет повторную передачу сообщения через короткие промежутки времени (тайм-ауты). Если приложение-клиент не получает отклик, то с уверенностью можно сказать, что процедура была выполнена ноль или большее число раз. Если отклик был получен, приложение может сделать вывод, что процедура была выполнена хотя бы однажды. При использовании надежного транспортного протокола (TCP) в случае получения отклика можно сказать, что процедура была выполнена один раз. Если же отклик не получен, определенно сказать, что процедура выполнена не была, нельзя3.

Как это работает?

По существу, собственно система RPC является встроенной в программу-клиент и программу-сервер. Отрадно, что при разработке распределенных приложений, не придется вникать в подробности протокола RPC или программировать обработку сообщений. Система предполагает существование соответствующей среды разработки, которая значительно облегчает жизнь создателям прикладного программного обеспечения. Одним из ключевых моментов в RPC является то, что разработка распределенного приложения начинается с определения интерфейса объекта - формального описания функций сервера, сделанного на специальном языке. На основании этого интерфейса затем автоматически создаются заглушки клиента и сервера. Единственное, что необходимо сделать после этого, - написать фактический код процедуры.

В качестве примера рассмотрим RPC фирмы Sun Microsystems. Система состоит из трех основных частей:

  • rpcgen(1) - RPC-компилятор, который на основании описания интерфейса удаленной процедуры генерирует заглушки клиента и сервера в виде программ на языке С.
  • Библиотека XDR (eXternal Data Representation), которая содержит функции для преобразования различных типов данных в машинно-независимый вид, позволяющий производить обмен информацией между разнородными системами.
  • Библиотека модулей, обеспечивающих работу системы в целом.

Рассмотрим пример простейшего распределенного приложения для ведения журнала событий. Клиент при запуске вызывает удаленную процедуру записи сообщения в файл журнала удаленного компьютера.

Для этого придется создать как минимум три файла: спецификацию интерфейсов удаленных процедур log.x (на языке описания интерфейса), собственно текст удаленных процедур log.c и текст головной программы клиента main () - client.c (на языке С) .

Компилятор rpcgen(l) на основании спецификации log.x создает три файла: текст заглушек клиента и сервера на языке С (log clnt.c и log svc.c) и файл описаний log.h, используемый обеими заглушками.

Итак, рассмотрим исходные тексты программ.

В этом файле указываются регистрационные параметры удаленной процедуры - номера программы, версии и процедуры, а также определяется интерфейс вызова - входные аргументы и возвращаемые значения. Таким образом, определена процедура RLOG, в качестве аргумента принимающая строку (которая будет записана в журнал), а возвращаемое значение стандартно указывает на успешное или неудачное выполнение заказанной операции.


program LOG_PROG { version LOG_VER { int RLOG (string) = 1; } = 1; } = 0х31234567;

Компилятор rpcgen(l) создает файл заголовков log.h, где, в частности, определены процедуры:


Рассмотрим этот файл внимательно. Компилятор транслирует имя RLOG определенное в файле описания интерфейса, в rlog_1, заменяя прописные символы на строчные и добавляя номер версии программы с подчеркиванием. Тип возвращаемого значения изменился с int на int *. Таково правило - RPC позволяет передавать и получать только адреса объявленных при описании интерфейса параметров. Это же правило касается и передаваемой в качестве аргумента строки. Хотя из файла print.h это не следует, на самом деле в качестве аргумента функции rlog_l () также передается адрес строки.

Помимо файла заголовков компилятор rpcgen(l) создает модули заглушки клиента и заглушки сервера. По существу, в тексте этих файлов заключен весь код удаленного вызова.

Заглушка сервера является головной программой, обрабатывающей все сетевое взаимодействие с клиентом (точнее, с его заглушкой). Для выполнения операции заглушка сервера производит локальный вызов функции, текст которой необходимо написать:


Заглушка клиента принимает аргумент, передаваемый удаленной процедуре, делает необходимые преобразования, формирует запрос на сервер portmap(1M), обменивается данными с сервером удаленной процедуры и, наконец, передает возвращаемое значение клиенту. Для клиента вызов удаленной процедуры сводится к вызову заглушки и ничем не отличается от обычного локального вызова.

client.c


#include #include "log.h" main (int argc, char *argv) { CLIENT *cl; char *server, *mystring, *clnttime; time_t bintime; int *result; if (argc != 2) { fprintf(stderr, "Формат вызова: %s Адрес_хоста\n", argv ); exit (1) ; } server = argv ; /*Получим дескриптор клиента. В случае неудачи - сообщим о невозможности установления связи с сервером*/ if ((с1 = clnt_create (server, LOG_PROG, LOG_VER, "udp")) == NULL) { clnt_pcreateerror (server); exit (2); } /*Выделим буфер для строки*/ mystring = (char *)malloc (100); /*Определим время события*/ bintime = time ((time_t *) NULL); clnttime = ctime(&bintime); sprintf (mystring, "%s - Клиент запущен", clnttime); /*Передадим сообщение для журнала - время начала работы клиента. В случае неудачи - сообщим об ошибке*/ if ((result = rlog_l(&mystring, cl)) == NULL ) { fprintf(stderr, "error2\n"); clnt_perror(cl, server); exit(3); } /*B случае неудачи на удаленном компьютере сообщим об ошибке*/ if (*result !=0) fprintf(stderr, "Ошибка записи в журнал\n"); /*0свободим дескриптор*/ cint destroy(cl); exit (0); }

Заглушка клиента log_clnt.c компилируется с модулем client.c для получения исполняемой программы клиента.


Теперь на некотором хосте server.nowhere.ru необходимо запустить серверный процесс:


$ logger

После чего при запуске клиента rlog на другой машине сервер добавит соответствующую запись в файл журнала.

Схема работы RPC в этом случае приведена на рис. 1. Модули взаимодействуют следующим образом:

  1. Когда запускается серверный процесс, он создает сокет UDP и связывает любой локальный порт с этим сокетом. Далее сервер вызывает библиотечную функцию svc_register(3N) для регистрации номеров программы и ее версии. Для этого функция обращается к процессу portmap(IM) и передает требуемые значения. Сервер portmap(IM) обычно запускается при инициализации системы и связывается с некоторым общеизвестным портом. Теперь portmap(3N) знает номер порта для нашей программы и версии. Сервер же ожидает получения запроса. Заметим, что все описанные действия производятся заглушкой сервера, созданной компилятором rpcgen(IM).
  2. Когда запускается программа rlog, первое, что она делает, - вызывает библиотечную функцию clnt_create(3N), указывая ей адрес удаленной системы, номера программы и версии, а также транспортный протокол. Функция направляет запрос к серверу portmap(IM) удаленной системы server.nowhere.m и получает номер удаленного порта для сервера журнала.
  3. Клиент вызывает процедуру rlog_1 () , определенную в заглушке клиента, и передает управление заглушке. Та, в свою очередь, формирует запрос (преобразуя аргументы в формат XDR) в виде пакета UDP и направляет его на удаленный порт, полученный от сервера portmap(IM). Затем она некоторое время ожидает отклика и в случае неполучения повторно отправляет запрос. При благоприятных обстоятельствах запрос принимается сервером logger (модулем заглушки сервера). Заглушка определяет, какая именно функция была вызвана (по номеру процедуры), и вызывает функцию rlog_1 () модуля log.c. После возврата управления обратно в заглушку последняя преобразует возвращенное функцией rlog_1 () значение в формат XDR, и формирует отклик также в виде пакета UDP. После получения отклика заглушка клиента извлекает возвращенное значение, преобразует его и возвращает в головную программу клиента

Цель данной статьи - обсудить терминологию. Статья - не о том, как и для чего, а только исключительно об использовании терминологии. Статья отражает мнение автора и не претендует на научность.

Вступление

Если вы работаете в области программирования распределенных систем или в интеграции систем , то большая часть изложенного здесь вам не в новинку.

Проблема возникает, когда встречаются люди, использующие разные технологии, и когда эти люди начинают технические разговоры. При этом часто возникает взаимное недопонимание, обусловленное терминологией. Я здесь попытаюсь свести воедино терминологии, используемые в разных контекстах.

Терминология

Четкой терминологии и классификации в этой области нет. Используемая ниже терминология является отражением модели, сложившейся у автора, то есть она строго субъективна. Любая критика и любые обсуждения приветствуются.

Я разделил терминологию на три области: RPC (Remote Procedure Call), Messaging и REST. Эти области имеют под собою исторические корни.

RPC

RPC технологии - наиболее старые технологии. Наиболее яркие представители RPC, это - CORBA и DCOM .

В те времена в основном приходилось связывать системы в быстрых и относительно надежных локальных сетях. Главная идея RPC была в том, чтобы сделать вызов удаленных систем очень похожим на вызов функций внутри программы. Вся механика удаленных вызовов пряталась от программиста. По крайней мере её пытались спрятать. Программисты во многих случаях вынуждены были работать на более глубоком уровне, где появлялись термины маршалинг (marshalling ) и unmarshalling (как это по-русски?), что по сути означало сериализацию. Обычные вызовы функций внутри процессов обрабатывались на вызывающей стороне в Proxy , а на стороне системы, выполняющей функцию, в Dispatcher . В идеале ни вызывающая система, ни обрабатывающая система не занимались тонкостями передачи данных между системами. Все эти тонкости сосредотачивались в связке Proxy - Dispatcher, код которых генерировался автоматически.

Поэтому вы не заметите, не должны заметить, никакой разницы между вызовом локальной функции и вызовом удаленной функции.
Сейчас наблюдается своеобразный ренесанс RPC, наиболее яркие представители которого: Google ProtoBuf, Thrift, Avro.

Messaging

С течением времени выяснилось, что попытка оградить программиста от того, что вызываемая функция все же отличается от локальной, не привела к желаемому результату. Детали реализации и принципиальные отличия распределенных систем были слишком велики, чтобы решаться с помощью автоматически генерируемого кода Proxy. Постепенно пришло понимание, что факт того, что системы связывает ненадежная, медленная, низкоскоростная среда, должен быть явно отражен в коде программы.

Появились технологии веб-сервисов . Мы стали говорить ABC: Address, Binding, Contract . Не совсем понятно, почему появились контракты, которые по сути являются Envelope (конвертами) для входных аргументов. Контракты чаще усложняют всю модель, чем упрощают ее. Но… неважно.

Теперь программист явным образом создавал сервис (Service ) или клиента (Client ), вызывающего сервис. Сервис представлял из себя набор операций (Operation ), каждая из которых на входе принимала запрос (Request ) и выдавала ответ (Response ). Клиент явным образом посылал (Sent ) запрос, сервис явным образом получал (Receive ) его и отвечал (Sent), высылая ответ. Клиент получал (Receive) ответ и на этом вызов завершался.

Так же, как и в RPC, где-то здесь работали Proxy и Dispatcher. И как прежде их код генерировался автоматически и программисту не надо было в нем разбираться. Разве только что, клиент явным образом использовал классы из Proxy.

Запросы и ответы явным образом преобразуются к формату, предназначенному для передачи по проводам. Чаще всего это массив байт. Преобразование называется Serialization и Deserialization и иногда прячется в коде Proxy.
Кульминация messaging проявилась в появлении парадигмы ESB (Enterprise Service Bus) . Никто толком не может сформулировать, что это такое, но все сходятся на том, что данные по ESB движутся в виде сообщений.

REST

В постоянной борьбе со сложностью кода, программисты сделали очередной шаг и создали REST .

Основной принцип REST в том, что операции-функции резко ограничили и оставили только набор операций CRUD: Create - Read - Update - Delete . В этой модели все операции всегда применяются к некоторым данным. Имеющихся в CRUD операций достаточно для большей части приложений. Так как REST технологии в большинстве случаев подразумевают использование протокола HTTP, то команды CRUD отразились на команды HTTP (Post - Get - Put - Delete ) . Постоянно утверждается, что REST не обязательно привязан к HTTP. Но на практике повсеместно используется отражение сигнатур операций на синтаксис HTTP команд. К примеру, вызов функции

EntityAddress ReadEntityAddress(string param1, string param2)

Выразится в таком виде:

GET: entityAddress?param1=value1¶m2=value2

Заключение

Прежде, чем начинать дискуссию по распределенным системам или по интеграции, определитесь с терминологией. Если Proxy всегда будет означать одно и то же в разных контекстах, то, к примеру, request мало что будет значить в терминах RPC, а marshalling вызовет недоумение при обсуждении REST технологий.

Программы, общающиеся через сеть, нуждаются в механизме связи. На нижнем уровне по поступлении пакетов подается сигнал, обрабатываемый сетевой программой обработки сигналов. На верхнем уровне работает механизм rendezvous (рандеву), принятый в языке Ада. В NFS используется механизм вызова удаленных процедур (RPC), в котором клиент взаимодействует с сервером (см. Рисунок 1). В соответствии с этим процессом клиент сначала обращается к процедуре, посылающей запрос на сервер. По прибытии пакета с запросом сервер вызывает процедуру его вскрытия, выполняет запрашиваемую услугу, посылает ответ, и управление возвращается клиенту.

Интерфейс RPC можно представить состоящим из трех уровней:

Верхний уровень полностью "прозрачен". Программа этого уровня может, например, содержать обращение к процедуре rnusers(), возвращающей число пользователей на удаленной машине. Вам не нужно знать об использовании механизма RPC, поскольку вы делаете обращение в программе.

Средний уровень предназначен для наиболее общих приложений. RPC-вызовами на этом уровне занимаются подпрограммы registerrpc() и callrpc(): registerrpc() получает общесис темный код, а callrpc() исполняет вызов удаленной процедуры. Вызов rnusers() реализуется с помощью этих двух подпрограмм.

Нижний уровень используется для более сложных задач, изменяющих умолчания на значения параметров процедур. На этом уровне вы можете явно манипулировать гнездами, используемыми для передачи RPC-сообщений.

Как правило, вам следует пользоваться верхним уровнем и избегать использования нижних уровней без особой необходимости.

Несмотря на то, что в данном руководстве мы рассматриваем интерфейс только на Си, обращение к удаленным процедурам может быть сделано из любого языка. Работа механизма RPC для организации взаимодействия между процессами на разных машинах не отличается от его работы на одной машине.

RPC (Remote Procedure Call, Сервис вызова удаленных процедур) представляет собой интерфейс между удаленными пользователями и определенными программами хоста, которые запускаются по запросам этих пользователей. Сервис RPC какого-либо хоста, как правило, предоставляет клиентам комплекс программ. Каждая из таких программ состоит, в свою очередь, из одной или нескольких удаленных процедур. Например, сервис удаленной файловой системы NFS, который построен на вызовах RPC, может состоять только из двух программ: например, одна программа взаимодействует с высокоуровневыми пользовательскими интерфейсами, а другая - с низкоуровневыми функциями ввода-вывода.

В каждом вызове удаленной процедуры участвуют две стороны: активный клиент, который отправляет запрос вызова процедуры на сервер, и сервер, который отправляет клиенту ответ.

Примечание. Следует иметь в виду, что термины "клиент" и "сервер" в данном случае относятся к определенной транзакции Конкретный хост или программное обеспечение (процесс или программа) могут работать как в роли клиента, так и в роли сервера. Например, программа, которая обеспечивает работу сервиса удаленных процедур, в то же время может быть клиентом в работе с сетевой файловой системой.

Протокол RPC построен на модели вызовов удаленных процедур, подобному механизму вызовов локальных процедур. При вызове локальной процедуры вы помещаете аргументы в определенное место памяти, в стек или переменные окружения и передаете управление процессом по определенному адресу. После завершения работы вы читаете результаты по конкретному адресу и продолжаете свой процесс.

В случае работы с удаленной процедурой, основное отличие состоит в том, что вызов удаленной функции обслуживают два процесса: клиентский процесс и серверный процесс.

Процесс клиента отправляет серверу сообщение, в которое включены параметры вызываемой процедуры и ожидает ответного сообщения с результатами ее работы. При получении ответа результат считывается, и процесс продолжает работу. Со стороны сервера процесс-обработчик вызовов находится в состоянии ожидания, и, при поступлении сообщения, считывает параметры процедуры, выполняет ее, отправляет ответ и становится в состояние ожидания следующего вызова.

RPC-протокол не накладывает каких-либо требований на дополнительные связи между процессами и не требует синхронности выполняемых функций, т. е. вызовы могут быть асинхронными и взамонезависимыми, так что клиент во время ожидания ответа может выполнять другие процедуры. Сервер RPC может выделять для каждой функции отдельный процесс или виртуальную машину, поэтому, не дожидаясь окончания работы предыдущих запросов, сразу же может принимать следующие.

Однако между вызовами локальных и удаленных процедур есть несколько важных отличий:

1. Обработка ошибок. Клиент в любом случае должен получать уведомление об ошибках, возникающих при вызовах удаленных процедур на сервере или в сети.

2. Глобальные переменные. Поскольку сервер не имеет доступа к адресному пространству клиента, при вызовах удаленных процедур нельзя использовать скрытые параметры в виде глобальных переменных.

3. Производительность. Скорость выполнения удаленных процедур, как правило на один или два порядка ниже скорости выполнения аналогичных локальных процедур.

4. Аутентификация. Поскольку вызовы удаленных процедур происходят по сети, необходимо использовать механизмы аутентификации клиента.

Принципы построения протокола.

Протокол RPC может использовать несколько различных транспортных протоколов. В обязанности RPC-протокола входит только обеспечение стандартов и интерпретация передачи сообщений. Достоверность и надежность передачи сообщений целиком обеспечивается транспортным уровнем.

Однако RPC может контролировать выбор и некоторые функции транспортного протокола. В качестве примера взаимодействия между RPC и транспортным протоколом рассмотрим процедуру назначения RPC-порта работы прикладного процесса через RPC - Portmapper .

Эта функция динамически (по запросу) назначает соединению RPC определенный порт. Функция Portmapper используется довольно часто, поскольку набор зарезервированных для RPC транспортных портов ограничен, а количество процессов, которые потенциально могут одновременно работать очень высоко. Portmapper , например, вызывается при выборе портов взаимодействия клиента и сервера системы NFS.

Сервис Portmapper использует механизм широковещательных сообщений RPC на определенный порт - III. На этот порт клиент отправляет широковещательное сообщение запроса порта определенного сервиса RPC. Сервис Portmapper обрабатывает таксе сообщение, определяет адрес локального сервиса RPC и отправляет клиенту ответ. Сервис RPC Portmapper может работать как с TCP, так и с UDP-протоколами.

RPC может работать с различными транспортными протоколами, но никогда не дублирует их функции, т. е. если RPC работает поверх TCP, все заботы о надежности и достоверности соединения RPC возлагает на TCP. Однако, если протокол RPC установлен поверх UDP, он может обеспечивать дополнительные собственные функции обеспечения гарантированной доставки сообщений.

Примечание. Прикладные задачи могут рассматривать RPC-протокол как определенную процедуру вызова функции по сети JSR (Jump Subroutine Instruction).

Для работы RPC-протокола необходимо выполнение следующих условий:

1. Уникальная идентификации всех удаленно вызываемых процедур на данном хосте. RPC-запросы содержат три поля идентификаторов - номер удаленной программы (сервиса), номер версии удаленной программы и номер удаленной процедуры указанной программы. Номер программы назначается производителем сервиса, номер процедуры указывает на конкретную функцию данного сервиса

2. Идентификация версии RPC-протокола. RPC-сообщения содержат поле версии RPC-протокола. Она используется для согласования форматов передаваемых параметров при работе клиента с различными версиями RPC.

3. Предоставление механизмов аутентификации клиента на сервере. RPC-протокол обеспечивает процедуру аутентификации клиента в сервисе, и, в случае необходимости, при каждом запросе или отправке ответа клиенту. Кроме того, RPC позволяет использовать различные дополнительные механизмы безопасности.

RPC может использовать четыре типа механизмов аутентификации:

AUTH_NULL - без использования аутентификации

AUTH_UNIX - аутентификация по стандарту UNIX

AUTH_SHORT - аутентификация по стандарту UNIX с собственной структурой кодирования

AUTH_DES - аутентификация по стандарту DES

4. Идентификация сообщений ответа на соответствующие запросы. Ответные сообщения RPC содержат идентификатор запроса, на основании которого они были построены. Этот идентификатор можно назвать идентификатором транзакции вызова RPC. Данный механизм особенно необходим при работе в асинхронном режиме и при выполнении последовательности из нескольких RPC-вызовов.

5. Идентификация ошибок работы протокола. Все сетевые или серверные ошибки имеют уникальные идентификаторы, по которым каждый из участников соединения может определить причину сбоя в работе.

Структуры сообщений протокола

При передаче RPC-сообщений поверх транспортного протокола, несколько RPC-сообщений могут располагаться внутри одного транспортного пакета. Для того чтобы отделять одно сообщение от другого, используется маркер записи (RM - Record Marker). Каждое RPC-сообщение "маркируется" ровно одним RM.

RPC-сообщение может состоять из нескольких фрагментов. Каждый фрагмент состоит из четырех байт заголовка и (от 0 до 2**31-1) данных. Первый бит заголовка указывает, является ли данный фрагмент последним, а остальные 31 бит указывают длину пакета данных.

Структура RPC формально описана на языке описания и представления форматов данных - XDR с дополнениями, касающимися описания процедур. Можно даже сказать, что язык описания RPC является расширением XDR, дополненным работой с процедурами.

Структура RPC-пакета выглядит следующим образом:

struct rpc_msg {

unsigned int xid;

union switch (msg_type mtype) {

call_body cbody;

reply body rbody;

где xid - идентификатор текущей транзакции, call_body - пакет запроса, reply_body - пакет ответа. Структура запроса выглядит примерно так:

struct call body {

unsigned int rpcvers;

unsigned int prog;

unsigned int vers;

unsigned int proc;

opaque_auth cred;

opaque_auth verf;

/* procedure parameters */

Структура ответа (reply_body) может содержать либо структуру, передаваемую в случае ошибки (тогда она содержит код ошибки), либо структуру успешной обработки запроса (тогда она содержит возвращаемые данные).

Программный интерфейс высокого уровня.

Использование подпрограмм в программе - традиционный способ структурировать задачу, сделать ее более ясной. Наиболее часто используемые подпрограммы собираются в библиотеки, где могут использоваться различными программами. В данном случае речь идет о локальном (местном) вызове, т. е. и вызывающий, и вызываемый объекты работают в рамках одной программы на одном компьютере.

В случае удаленного вызова процесс, выполняющийся на одном компьютере, запускает процесс на удаленном компьютере (т. е. фактически запускает код процедуры на удаленном компьютере). Очевидно, что удаленный вызов процедуры существенным образом отличается от традиционного локального, однако с точки зрения программиста такие отличия практически отсутствуют, т. е. архитектура удаленного вызова процедуры позволяет сымитировать вызов локальной.

Однако если в случае локального вызова программа передает параметры в вызываемую процедуру и получает результат работы через стек или общие области памяти, то в случае удаленного вызова передача параметров превращается в передачу запроса по сети, а результат работы находится в пришедшем отклике.

Данный подход является возможной основой создания распределенных приложений, и хотя многие современные системы не используют этот механизм, основные концепции и термины во многих случаях сохраняются. При описании механизма RPC мы будем традиционно называть вызывающий процесс - клиентом, а удаленный процесс, реализующий процедуру, - сервером.

Удаленный вызов процедуры включает следующие шаги:

1. Программа-клиент производит локальный вызов процедуры, называемой заглушкой (stub). При этом клиенту "кажется", что, вызывая заглушку, он производит собственно вызов процедуры-сервера. И действительно, клиент передает заглушке необходимые параметры, а она возвращает результат. Однако дело обстоит не совсем так, как это себе представляет клиент. Задача заглушки - принять аргументы, предназначаемые удаленной процедуре, возможно, преобразовать их в некий стандартный формат и сформировать сетевой запрос. Упаковка аргументов и создание сетевого запроса называется сборкой (marshalling).

2. Сетевой запрос пересылается по сети на удаленную систему. Для этого в заглушке используются соответствующие вызовы, например, рассмотренные в предыдущих разделах. Заметим, что при этом могут быть использованы различные транспортные протоколы, причем не только семейства TCP/IP.

3. На удаленном хосте все происходит в обратном порядке. Заглушка сервера ожидает запрос и при получении извлекает параметры - аргументы вызова процедуры. Извлечение (unmarshalling) может включать необходимые преобразования (например, изменения порядка расположения байтов).

4. Заглушка выполняет вызов настоящей процедуры-сервера, которой адресован запрос клиента, передавая ей полученные по сети аргументы.

5. После выполнения процедуры управление возвращается в заглушку сервера, передавая ей требуемые параметры. Как и заглушка клиента; заглушка сервера преобразует возвращенные процедурой значения, формируя сетевое сообщение-отклик, который передается по сети системе, от которой пришел запрос.

6. Операционная система передает полученное сообщение заглушке клиента, которая, после необходимого преобразования, передает значения (являющиеся значениями, возвращенными удаленной процедурой) клиенту, воспринимающему это как нормальный возврат из процедуры.

Таким образом, с точки зрения клиента, он производит вызов удаленной процедуры, как он это сделал бы для локальной. То же самое можно сказать и о сервере: вызов процедуры происходит стандартным образом, некий объект (заглушка сервера) производит вызов локальной процедуры и получает возвращенные ею значения. Клиент воспринимает заглушку как вызываемую процедуру-сервер, а сервер принимает собственную заглушку за клиента.

Таким образом, заглушки составляют ядро системы RPC, отвечая за все аспекты формирования и передачи сообщений между клиентом и удаленным сервером (процедурой), хотя и клиент и сервер считают, что вызовы происходят локально. В этом-то и состоит основная концепция RPC - полностью спрятать распределенный (сетевой) характер взаимодействия в коде заглушек. Преимущества такого подхода очевидны: и клиент и сервер являются независимыми от сетевой реализации, оба они работают в рамках некой распределенной виртуальной машины, и вызовы процедур имеют стандартный интерфейс.

Передача параметров

Передача параметров-значений не вызывает особых трудностей. В этом случае заглушка клиента размещает значение параметра в сетевом запросе возможно, выполняя преобразования к стандартному виду (например, изменяя порядок следования байтов). Гораздо сложнее обстоит дело с передачей указателей, когда параметр представляет собой адрес данных, а не их значение. Передача в запросе адреса лишена смысла, так как удаленная процедура выполняется в совершенно другом адресном пространстве. Самым простым решением, применяемым в RPC, является запрет клиентам передавать параметры иначе, как по значению, хотя это, безусловно, накладывает серьезные ограничения.

Связывание (binding)

Прежде чем клиент сможет вызвать удаленную процедуру, необходимо связать его с удаленной системой, располагающей требуемым сервером. Таким образом, задача связывания распадается на две:

Нахождение удаленного хоста с требуемым сервером

Нахождение требуемого серверного процесса на данном хосте

Для нахождения хоста могут использоваться различные подходы. Возможный вариант - создание некоего централизованного справочника, в котором хосты анонсируют свои серверы, и где клиент при желании может выбрать подходящие для него хост и адрес процедуры.

Каждая процедура RPC однозначно определяется номером программы и процедуры. Номер программы определяет группу удаленных процедур, каждая из которых имеет собственный номер. Каждой программе также присваивается номер версии, так что при внесении в программу незначительных изменений (например, при добавлении процедуры) отсутствует необходимость менять ее номер. Обычно несколько функционально сход-ных процедур реализуются в одном программном модуле, который при запуске становится сервером этих процедур, и который идентифицируется номером программы.

Таким образом, когда клиент хочет вызвать удаленную процедуру, ему необходимо знать номера программы, версии и процедуры, предоставляющей требуемый сервис.

Для передачи запроса клиенту также необходимо знать сетевой адрес хоста и номер порта, связанный с программой-сервером, обеспечивающей требуемые процедуры. Для этого используется демон portmap(IM) (в некоторых системах он называется rpcbind(IM)). Демон запускается на хосте, который предоставляет сервис удаленных процедур, и использует общеизвестный номер порта. При инициализации процесса-сервера он регистрирует в portmap(IM) свои процедуры и номера портов. Теперь, когда клиенту требуется знать номер порта для вызова конкретной процедуры, он посылает запрос на сервер portmap(IM), который, в свою очередь, либо возвращает номер порта, либо перенаправляет запрос непосредственно серверу удаленной процедуры и после ее выполнения возвращает клиенту отклик. В любом случае, если требуемая процедура существует, клиент получает от сервера portmap(IM) номер порта процедуры, и дальнейшие запросы может делать уже непосредственно на этот порт.

Обработка особых ситуаций (exception)

Обработка особых ситуаций при вызове локальных процедур не представляет особой проблемы. UNIX обеспечивает обработку ошибок процессов таких как деление на ноль, обращение к недопустимой области памяти и т. д. В случае вызова удаленной процедуры вероятность возникновения ошибочных ситуаций увеличивается. К ошибкам сервера и заглушек добавляются ошибки, связанные, например, с получением ошибочного сетевого сообщения.

Например, при использовании UDP в качестве транспортного протокола производится повторная передача сообщений после определенного тайм-аута. Клиенту возвращается ошибка, если, спустя определенное число попыток, отклик от сервера так и не был получен. В случае, когда используется протокол TCP, клиенту возвращается ошибка, если сервер оборвал TCP-соединение.

Семантика вызова

Вызов локальной процедуры однозначно приводит к ее выполнению после чего управление возвращается в головную программу. Иначе дело обстоит при вызове удаленной процедуры. Невозможно установить, когда конкретно будет выполняться процедура, будет ли она выполнена вообще, а если будет, то какое число раз? Например, если запрос будет получен удаленной системой после аварийного завершения программы сервера, процедура не будет выполнена вообще. Если клиент при неполучении отклика после определенного промежутка времени (тайм-аута) повторно посылает запрос, то может создаться ситуация, когда отклик уже передается по сети, а повторный запрос вновь принимается на обработку удаленной процедурой. В этом случае процедура будет выполнена несколько раз.

Таким образом, выполнение удаленной процедуры можно характеризовать следующей семантикой:

- Один и только один раз. Данного поведения (в некоторых случаях наиболее желательного) трудно требовать ввиду возможных аварий сервера.

- Максимум раз. Это означает, что процедура либо вообще не была выполнена, либо была выполнена только один раз. Подобное утверждение можно сделать при получении ошибки вместо нормального отклика.

- Хотя бы раз. Процедура наверняка была выполнена один раз, но возможно и больше. Для нормальной работы в такой ситуации удаленная процедура должна обладать свойством идемпотентности (от англ. idemponent). Этим свойством обладает процедура, многократное выполнение которой не вызывает кумулятивных изменений. Например, чтение файла идемпотентно, а добавление текста в файл - нет.

Представление данных

Когда клиент и сервер выполняются в одной системе на одном компьютере, проблем с несовместимостью данных не возникает. И для клиента и для сервера данные в двоичном виде представляются одинаково. В случае удаленного вызова дело осложняется тем, что клиент и сервер могут выполняться на системах с различной архитектурой, имеющих различное представление данных (например, представление значения с плавающей точкой, порядок следования байтов и т. д.)

Большинство реализаций системы RPC определяют некоторые стандартные виды представления данных, к которым должны быть преобразованы все значения, передаваемые в запросах и откликах.

Например, формат представления данных в RPC фирмы Sun Microsystems следующий:

Порядок следования байтов - Старший - последний

Представление значений с плавающей точкой - IEEE

Представление символа - ASCII

По своей функциональности система RPC занимает промежуточное место между уровнем приложения и транспортным уровнем. В соответствии с моделью OSI этому положению соответствуют уровни представления и сеанса. Таким образом, RPC теоретически независим от реализации сети, в частности, от сетевых протоколов транспортного уровня.

Программные реализации системы, как правило, поддерживают один или два протокола. Например, система RPC разработки фирмы Sun Microsystems поддерживает передачу сообщений с использованием протоколов TCP и UDP. Выбор того или иного протокола зависит от требований приложения. Выбор протокола UDP оправдан для приложений, обладающих следующими характеристиками:

Вызываемые процедуры идемпотентны

Размер передаваемых аргументов и возвращаемого результата меньше размера пакета UDP - 8 Кбайт.

Сервер обеспечивает работу с несколькими сотнями клиентов. Поскольку при работе с протоколами TCP сервер вынужден поддерживать соединение с каждым из активных клиентов, это занимает значительную часть его ресурсов. Протокол UDP в этом отношении является менее ресурсоемким

С другой стороны, TCP обеспечивает эффективную работу приложений со следующими характеристиками:

Приложению требуется надежный протокол передачи

Вызываемые процедуры неидемпонентны

Размер аргументов или возвращаемого результата превышает 8 Кбайт

Выбор протокола обычно остается за клиентом, и система по-разному организует формирование и передачу сообщений. Так, при использовании протокола TCP, для которого передаваемые данные представляют собой поток байтов, необходимо отделить сообщения друг от друга. Для этого например, применяется протокол маркировки записей, описанный в RFC1057 "RPC: Remote Procedure Call Protocol specification version 2", при котором в начале каждого сообщения помещается 32-разрядное целое число, определяющее размер сообщения в байтах.

По-разному обстоит дело и с семантикой вызова. Например, если RPC выполняется с использованием ненадежного транспортного протокола (UDP), система выполняет повторную передачу сообщения через короткие промежутки времени (тайм-ауты). Если приложение-клиент не получает отклик, то с уверенностью можно сказать, что процедура была выполнена ноль или большее число раз. Если отклик был получен, приложение может сделать вывод, что процедура была выполнена хотя бы однажды. При использовании надежного транспортного протокола (TCP) в случае получения отклика можно сказать, что процедура была выполнена один раз. Если же отклик не получен, определенно сказать, что процедура выполнена не была, нельзя3.

Как это работает?

По существу, собственно система RPC является встроенной в программу-клиент и программу-сервер. Отрадно, что при разработке распределенных приложений, не придется вникать в подробности протокола RPC или программировать обработку сообщений. Система предполагает существование соответствующей среды разработки, которая значительно облегчает жизнь создателям прикладного программного обеспечения. Одним из ключевых моментов в RPC является то, что разработка распределенного приложения начинается с определения интерфейса объекта - формального описания функций сервера, сделанного на специальном языке. На основании этого интерфейса затем автоматически создаются заглушки клиента и сервера. Единственное, что необходимо сделать после этого, - написать фактический код процедуры.

В качестве примера рассмотрим RPC фирмы Sun Microsystems. Система состоит из трех основных частей:

Rpcgen(1) - RPC-компилятор, который на основании описания интерфейса удаленной процедуры генерирует заглушки клиента и сервера в виде программ на языке С.

Библиотека XDR (eXternal Data Representation), которая содержит функции для преобразования различных типов данных в машинно-независимый вид, позволяющий производить обмен информацией между разнородными системами.

Библиотека модулей, обеспечивающих работу системы в целом.

Рассмотрим пример простейшего распределенного приложения для ведения журнала событий. Клиент при запуске вызывает удаленную процедуру записи сообщения в файл журнала удаленного компьютера.

Для этого придется создать как минимум три файла: спецификацию интерфейсов удаленных процедур log.x (на языке описания интерфейса), собственно текст удаленных процедур log.c и текст головной программы клиента main () - client.c (на языке С) .

Компилятор rpcgen(l) на основании спецификации log.x создает три файла: текст заглушек клиента и сервера на языке С (log clnt.c и log svc.c) и файл описаний log.h, используемый обеими заглушками.

Итак, рассмотрим исходные тексты программ.

В этом файле указываются регистрационные параметры удаленной процедуры - номера программы, версии и процедуры, а также определяется интерфейс вызова - входные аргументы и возвращаемые значения. Таким образом, определена процедура RLOG, в качестве аргумента принимающая строку (которая будет записана в журнал), а возвращаемое значение стандартно указывает на успешное или неудачное выполнение заказанной операции.

program LOG_PROG {

version LOG_VER {

int RLOG (string) = 1;

} = 0х31234567;

Компилятор rpcgen(l) создает файл заголовков log.h, где, в частности, определены процедуры:

log.h

* Please do not edit this file.

* It was generated using rpcgen.

#ifndef _LOG_H_RPCGEN

#define _LOG_H_RPCGEN

#include

/* Номер программы*/

#define LOG_PROG ((unsigned long) (0х31234567))

#define LOG_VER ((unsigned long) (1)) /*Номер версии*/

#define RLOG ((unsigned long) (1)) /*Номер процедуры*/

extern int *rlog_l () ;

/*Внутренняя процедура - нам ее использовать не придется*/ extern int log_prog_l_freeresult();

#endif /* !_LOG_H_RPCGEN */

Рассмотрим этот файл внимательно. Компилятор транслирует имя RLOG определенное в файле описания интерфейса, в rlog_1, заменяя прописные символы на строчные и добавляя номер версии программы с подчеркиванием. Тип возвращаемого значения изменился с int на int *. Таково правило - RPC позволяет передавать и получать только адреса объявленных при описании интерфейса параметров. Это же правило касается и передаваемой в качестве аргумента строки. Хотя из файла print.h это не следует, на самом деле в качестве аргумента функции rlog_l () также передается адрес строки.

Помимо файла заголовков компилятор rpcgen(l) создает модули заглушки клиента и заглушки сервера. По существу, в тексте этих файлов заключен весь код удаленного вызова.

Заглушка сервера является головной программой, обрабатывающей все сетевое взаимодействие с клиентом (точнее, с его заглушкой). Для выполнения операции заглушка сервера производит локальный вызов функции, текст которой необходимо написать:

log.c

#include

#include

#include

#include "log.h"

int *rlog_1 (char **arg)

/*Возвращаемое значение должно определяться как static*/

static int result;

int fd; /*Файловый дескриптор журнала*/

/*0ткроем файл журнала (создадим, если он не существует), в случае неудачи вернем код ошибки result == 1.*/

if ((fd=open("./server .log",

O_CREAT | O_RDWR | O_APPEND)) < 0) return (&result);

len = strlen(*arg);

if (write(fd, *arg, strlen(*arg)) != len)

return(&result); /*Возвращаем результат - адрес result*/

Заглушка клиента принимает аргумент, передаваемый удаленной процедуре, делает необходимые преобразования, формирует запрос на сервер portmap(1M), обменивается данными с сервером удаленной процедуры и, наконец, передает возвращаемое значение клиенту. Для клиента вызов удаленной процедуры сводится к вызову заглушки и ничем не отличается от обычного локального вызова.

client.c

#include

#include "log.h"

main(int argc, char *argv)

char *server, *mystring, *clnttime;

if (argc != 2) {

fprintf(stderr, "Формат вызова: %s Адрес_хоста\n",

/*Получим дескриптор клиента. В случае неудачи - сообщим о

невозможности установления связи с сервером*/

if ((с1 = clnt_create (server,

LOG_PROG, LOG_VER, "udp")) == NULL) {

clnt_pcreateerror (server);

/*Выделим буфер для строки*/

mystring = (char *)malloc (100);

/*Определим время события*/

bintime = time ((time_t *) NULL);

clnttime = ctime(&bintime);

sprintf (mystring, "%s - Клиент запущен", clnttime);

/*Передадим сообщение для журнала - время начала работы клиента. В случае неудачи - сообщим об ошибке*/

if ((result = rlog_l(&mystring, cl)) == NULL) {

fprintf(stderr, "error2\n");

clnt_perror(cl, server);

/*B случае неудачи на удаленном компьютере сообщим об ошибке*/

if (*result !=0)

fprintf(stderr, "Ошибка записи в журнал\n");

/*0свободим дескриптор*/

cint destroy(cl);

Заглушка клиента log_clnt.c компилируется с модулем client.c для получения исполняемой программы клиента.

cc -о rlog client.c log_clnt.c -Insl

Заглушка сервера log_svc.c и процедура log.c компилируются для получения исполняемой программы сервера.

cc -о logger log_svc.c log.c -Insl

Теперь на некотором хосте server.nowhere.ru необходимо запустить серверный процесс:

После чего при запуске клиента rlog на другой машине сервер добавит соответствующую запись в файл журнала.

Схема работы RPC в этом случае приведена на рис. 1. Модули взаимодействуют следующим образом:

1. Когда запускается серверный процесс, он создает сокет UDP и связывает любой локальный порт с этим сокетом. Далее сервер вызывает библиотечную функцию svc_register(3N) для регистрации номеров программы и ее версии. Для этого функция обращается к процессу portmap(IM) и передает требуемые значения. Сервер portmap(IM) обычно запускается при инициализации системы и связывается с некоторым общеизвестным портом. Теперь portmap(3N) знает номер порта для нашей программы и версии. Сервер же ожидает получения запроса. Заметим, что все описанные действия производятся заглушкой сервера, созданной компилятором rpcgen(IM).

2. Когда запускается программа rlog, первое, что она делает, - вызывает библиотечную функцию clnt_create(3N), указывая ей адрес удаленной системы, номера программы и версии, а также транспортный протокол. Функция направляет запрос к серверу portmap(IM) удаленной системы server.nowhere.m и получает номер удаленного порта для сервера журнала.

3. Клиент вызывает процедуру rlog_1 () , определенную в заглушке клиента, и передает управление заглушке. Та, в свою очередь, формирует запрос (преобразуя аргументы в формат XDR) в виде пакета UDP и направляет его на удаленный порт, полученный от сервера portmap(IM). Затем она некоторое время ожидает отклика и в случае неполучения повторно отправляет запрос. При благоприятных обстоятельствах запрос принимается сервером logger (модулем заглушки сервера). Заглушка определяет, какая именно функция была вызвана (по номеру процедуры), и вызывает функцию rlog_1 () модуля log.c. После возврата управления обратно в заглушку последняя преобразует возвращенное функцией rlog_1 () значение в формат XDR, и формирует отклик также в виде пакета UDP. После получения отклика заглушка клиента извлекает возвращенное значение, преобразует его и возвращает в головную программу клиента.


Лекция 4

4.1 Концепция удаленного вызова процедур

Идея вызова удаленных процедур (Remote Procedure Call - RPC) состоит в расширении хорошо известного и понятного механизма передачи управления и данных внутри программы, выполняющейся на одной машине, на передачу управления и данных через сеть. Средства удаленного вызова процедур предназначены для облегчения организации распределенных вычислений. Наибольшая эффективность использования RPC достигается в тех приложениях, в которых существует интерактивная связь между удаленными компонентами с небольшим временем ответов и относительно малым количеством передаваемых данных. Такие приложения называются RPC-ориентированными.

Характерными чертами вызова локальных процедур являются: асимметричность, то есть одна из взаимодействующих сторон является инициатором; синхронность, то есть выполнение вызывающей процедуры при останавливается с момента выдачи запроса и возобновляется только после возврата из вызываемой процедуры.

Реализация удаленных вызовов существенно сложнее реализации вызовов локальных процедур. Начнем с того, что поскольку вызывающая и вызываемая процедуры выполняются на разных машинах, то они имеют разные адресные пространства, и это создает проблемы при передаче параметров и результатов, особенно если машины не идентичны. Так как RPC не может рассчитывать на разделяемую память, то это означает, что параметры RPC не должны содержать указателей на ячейки нестековой памяти и что значения параметров должны копироваться с одного компьютера на другой. Следующим отличием RPC от локального вызова является то, что он обязательно использует нижележащую систему связи, однако это не должно быть явно видно ни в определении процедур, ни в самих процедурах. Удаленность вносит дополнительные проблемы. Выполнение вызывающей программы и вызываемой локальной процедуры в одной машине реализуется в рамках единого процесса. Но в реализации RPC участвуют как минимум два процесса - по одному в каждой машине. В случае, если один из них аварийно завершится, могут возникнуть следующие ситуации: при аварии вызывающей процедуры удаленно вызванные процедуры станут "осиротевшими", а при аварийном завершении удаленных процедур станут "обездоленными родителями" вызывающие процедуры, которые будут безрезультатно ожидать ответа от удаленных процедур.

Кроме того, существует ряд проблем, связанных с неоднородностью языков программирования и операционных сред: структуры данных и структуры вызова процедур, поддерживаемые в каком-либо одном языке программирования, не поддерживаются точно так же во всех других языках.


Эти и некоторые другие проблемы решает широко распространенная технология RPC, лежащая в основе многих распределенных операционных систем.

Базовые операции RPC

Чтобы понять работу RPC, рассмотрим вначале выполнение вызова локальной процедуры в обычной машине, работающей автономно. Пусть это, например, будет системный вызов

count=read (fd,buf,nbytes);

где fd – целое число;

buf – массив символов;

nbytes – целое число.

Чтобы осуществить вызов, вызывающая процедура заталкивает параметры в стек в обратном порядке. После того, как вызов read выполнен, он помещает возвращаемое значение в регистр, перемещает адрес возврата и возвращает управление вызывающей процедуре, которая выбирает параметры из стека, возвращая его в исходное состояние. Заметим, что в языке С параметры могут вызываться или по ссылке (by name), или по значению (by value). По отношению к вызываемой процедуре параметры-значения являются инициализируемыми локальными переменными. Вызываемая процедура может изменить их, и это не повлияет на значение оригиналов этих переменных в вызывающей процедуре.

Если в вызываемую процедуру передается указатель на переменную, то изменение значения этой переменной вызываемой процедурой влечет изменение значения этой переменной и для вызывающей процедуры. Этот факт весьма существенен для RPC.

Существует также другой механизм передачи параметров, который не используется в языке С. Он называется call-by-copy/restore и состоит в необходимости копирования вызывающей программой переменных в стек в виде значений, а затем копирования назад после выполнения вызова поверх оригинальных значений вызывающей процедуры.

Решение о том, какой механизм передачи параметров использовать, принимается разработчиками языка. Иногда это зависит от типа передаваемых данных. В языке С, например, целые и другие скалярные данные всегда передаются по значению, а массивы - по ссылке.

Идея, положенная в основу RPC, состоит в том, чтобы сделать вызов удаленной процедуры выглядящим по возможности также, как и вызов локальной процедуры. Другими словами - сделать RPC прозрачным: вызывающей процедуре не требуется знать, что вызываемая процедура находится на другой машине, и наоборот.

RPC достигает прозрачности следующим путем. Когда вызываемая процедура действительно является удаленной, в библиотеку помещается вместо локальной процедуры другая версия процедуры, называемая клиентским стабом (stub - заглушка). Подобно оригинальной процедуре, стаб вызывается с использованием вызывающей последовательности, так же происходит прерывание при обращении к ядру. Только в отличие от оригинальной процедуры он не помещает параметры в регистры и не запрашивает у ядра данные, вместо этого он формирует сообщение для отправки ядру удаленной машины.

Этапы выполнения RPC

Взаимодействие программных компонентов при выполнении удаленного вызова процедуры иллюстрируется рисунком 2.

Рисунок 2. Remote Procedure Call

После того, как клиентский стаб был вызван программой-клиентом, его первой задачей является заполнение буфера отправляемым сообщением. В некоторых системах клиентский стаб имеет единственный буфер фиксированной длины, заполняемый каждый раз с самого начала при поступлении каждого нового запроса. В других системах буфер сообщения представляет собой пул буферов для отдельных полей сообщения, причем некоторые из этих буферов уже заполнены. Этот метод особенно подходит для тех случаев, когда пакет имеет формат, состоящий из большого числа полей, но значения многих из этих полей не меняются от вызова к вызову.

Затем параметры должны быть преобразованы в соответствующий формат и вставлены в буфер сообщения. К этому моменту сообщение готово к передаче, поэтому выполняется прерывание по вызову ядра.

Когда ядро получает управление, оно переключает контексты, сохраняет регистры процессора и карту памяти (дескрипторы страниц), устанавливает новую карту памяти, которая будет использоваться для работы в режиме ядра. Поскольку контексты ядра и пользователя различаются, ядро должно точно скопировать сообщение в свое собственное адресное пространство, так, чтобы иметь к нему доступ, запомнить адрес назначения (а, возможно, и другие поля заголовка), а также оно должно передать его сетевому интерфейсу. На этом завершается работа на клиентской стороне. Включается таймер передачи, и ядро может либо выполнять циклический опрос наличия ответа, либо передать управление планировщику, который выберет какой-либо другой процесс на выполнение. В первом случае ускоряется выполнение запроса, но отсутствует мультипрограммирование.

На стороне сервера поступающие биты помещаются принимающей аппаратурой либо во встроенный буфер, либо в оперативную память. Когда вся информация будет получена, генерируется прерывание. Обработчик прерывания проверяет правильность данных пакета и определяет, какому стабу следует их передать. Если ни один из стабов не ожидает этот пакет, обработчик должен, либо поместить его в буфер, либо вообще отказаться от него. Если имеется ожидающий стаб, то сообщение копируется ему. Наконец, выполняется переключение контекстов, в результате чего восстанавливаются регистры и карта памяти, принимая те значения, которые они имели в момент, когда стаб сделал вызов receive.

Теперь начинает работу серверный стаб. Он распаковывает параметры и помещает их соответствующим образом в стек. Когда все готово, выполняется вызов сервера. После выполнения процедуры сервер передает результаты клиенту. Для этого выполняются все описанные выше этапы, только в обратном порядке.

Рисунок 3 показывает последовательность команд, которую необходимо выполнить для каждого RPC-вызова.

Рисунок 3. Этапы выполнения процедуры RPC