Схемы имитаторов звуковых эффектов, изменение голоса. Простые имитаторы звуков, световые эффекты, игрушки (11 схем) Имитаторы звуков схемы

Ниже приводятся несложные светозвуковые схемы, в основном собранные на основе мультивибраторов, для начинающих радиолюбителей. Во всех схемах использована простейшая элементная база, не требуется сложная наладка и допускается замена элементов на аналогичные в широких пределах.

Электронная утка

Игрушечную утку можно снабдить несложной схемой имитатора «кряканья» на двух транзисторах. Схема представляет собой классический мультивибратор на двух транзисторах, в одно плечо которого включен акустический капсюль, а нагрузкой другого служат два светодиода, которые можно вставить в глаза игрушки. Обе эти нагрузки работают поочередно – то раздается звук, то вспыхивают светодиоды – глаза утки. В качестве включателя питания SA1 можно применить герконовый датчик (можно взять из датчиков СМК-1, СМК-3 и др., используемых в системах охранной сигнализации как датчики открывания двери). При поднесении магнита к геркону его контакты замыкаются и схема начинает работать. Это может происходить при наклоне игрушки к спрятанному магниту или поднесения своеобразной «волшебной палочки» с магнитом.

Транзисторы в схеме могут быть любые p-n-p типа, малой или средней мощности, например МП39 – МП42 (старого типа), КТ 209, КТ502, КТ814, с коэффициентом усиления более 50. Можно использовать и транзисторы структуры n-p-n, например КТ315, КТ 342, КТ503, но тогда нужно изменить полярность питания, включения светодиодов и полярного конденсатора С1. В качестве акустического излучателя BF1 можно использовать капсюль типа ТМ-2 или малогабаритный динамик. Налаживание схемы сводится к подбору резистора R1 для получения характерного звука кряканья.

Звук подскакивающего металлического шарика

Схема довольно точно имитирует такой звук, по мере разряда конденсатора С1 громкость «ударов» снижается, а паузы между ними уменьшаются. В конце послышится характерный металлический дребезг, после чего звук прекратится.

Транзисторы можно заменить на аналогичные, как и в предыдущей схеме.
От емкости С1 зависит общая продолжительность звучания, а С2 определяет длительность пауз между «ударами». Иногда для более правдоподобного звучания полезно подобрать транзистор VT1, так как работа имитатора зависит от его начального тока коллектора и коэффициента усиления (h21э).

Имитатор звука мотора

Им можно, например, озвучить радиоуправляемую или другую модель передвижного устройства.

Варианты замены транзисторов и динамика – как и в предыдущих схемах. Трансформатор Т1 – выходной от любого малогабаритного радиоприемника (через него в приемниках также подключен динамик).

Существует множество схем имитации звуков пения птиц, голосов животных, гудка паровоза и т.д. Предлагаемая ниже схема собрана всего на одной цифровой микросхеме К176ЛА7 (К561 ЛА7, 564ЛА7) и позволяет имитировать множество разных звуков в зависимости от величины сопротивления, подключаемого к входным контактам Х1.

Следует обратить внимание, что микросхема здесь работает «без питания», то есть на ее плюсовой вывод (ножка 14) не подается напряжение. Хотя на самом деле питание микросхемы все же осуществляется, но происходит это только при подключении сопротивления-датчика к контактам Х1. Каждый из восьми входов микросхемы соединен с внутренней шиной питания через диоды, защищающие от статического электричества или неправильного подключения. Через эти внутренние диоды и осуществляется питание микросхемы за счет наличия положительной обратной связи по питанию через входной резистор-датчик.

Схема представляет собой два мультивибратора. Первый (на элементах DD1.1, DD1.2) сразу начинает вырабатывать прямоугольные импульсы с частотой 1 … 3 Гц, а второй (DD1.3, DD1.4) включается в работу, когда на вывод 8 с первого мультивибратора поступит уровень логической «1». Он вырабатывает тональные импульсы с частотой 200 … 2000 Гц. С выхода второго мультивибратора импульсы подаются на усилитель мощности (транзистор VT1) и из динамической головки слышится промодулированный звук.

Если теперь к входным гнездам Х1 подключить переменный резистор сопротивлением до 100 кОм, то возникает обратная связь по питанию и это преображает монотонный прерывающийся звук. Перемещая движок этого резистора и меняя сопротивление можно добиться звука, напоминающего трель соловья, щебетание воробья, крякание утки, квакание лягушки и т.д.

Детали
Транзистор можно заменить на КТ3107Л, КТ361Г но в этом случае нужно поставить R4 сопротивлением 3,3 кОм, иначе уменьшится громкость звука. Конденсаторы и резисторы – любых типов с номиналами, близкими к указанным на схеме. Надо иметь в виду, что в микросхемах серии К176 ранних выпусков отсутствуют вышеуказанные защитные диоды и такие зкземпляры в данной схеме работать не будут! Проверить наличие внутренних диодов легко – просто замерить тестером сопротивления между выводом 14 микросхемы («+» питания) и ее входными выводами (или хотя бы одним из входов). Как и при проверке диодов, сопротивление в одном направление должно быть низким, в другом – высоким.

Выключатель питания в этой схеме можно не применять, так как в режиме покоя устройство потребляет ток менее 1 мкА, что значительно меньше даже тока саморазряда любой батареи!

Наладка
Правильно собранный имитатор никакой наладки не требует. Для изменения тональности звука можно подбирать конденсатор С2 от 300 до 3000 пФ и резисторы R2, R3 от 50 до 470 кОм.

Фонарь-мигалка

Частоту миганий лампы можно регулировать подбором элементов R1, R2, C1. Лампа может быть от фонарика либо автомобильная 12 В. В зависимости от этого нужно выбирать напряжение питания схемы (от 6 до 12 В) и мощность коммутирующего транзистора VT3.

Транзисторы VT1, VT2 – любые маломощные соответствующей структуры (КТ312, КТ315, КТ342, КТ 503 (n-p-n) и КТ361, КТ645, КТ502 (p-n-p), а VT3 – средней или большой мощности (КТ814, КТ816, КТ818).

Простое устройство для прослушивания звукового сопровождения ТВ - передач на наушники. Не требует никакого питания и позволяет свободно перемещаться в пределах комнаты.

Катушка L1 представляет собой «петлю» из 5…6 витков провода ПЭВ (ПЭЛ)-0.3…0.5 мм, проложенную по периметру комнаты. Она подключается параллельно динамику телевизора через переключатель SA1 как показано на рисунке. Для нормальной работы устройства выходная мощность звукового канала телевизора должна быть в пределах 2…4 Вт, а сопротивление петли – 4…8 Ом. Провод можно проложить под плинтусом или в кабельном канале, при этом нужно располагать его по возможности не ближе 50 см от проводов сети 220 В для уменьшения наводок переменного напряжения.

Катушка L2 наматывается на каркас из плотного картона или пластика в виде кольца диаметром 15…18 см, которое служит наголовником. Она содержит 500…800 витков провода ПЭВ (ПЭЛ) 0,1…0,15 мм закрепленного клеем или изолентой. К выводам катушки подключены последовательно миниатюрный регулятор громкости R и наушник (высокоомный, например ТОН-2).

Автомат выключения освещения

От множества схем подобных автоматов эта отличается предельной простотой и надежностью и в подробном описании не нуждается. Она позволяет включать освещение или какой-нибудь электроприбор на заданное непродолжительное время, а затем автоматически его отключает.

Для включения нагрузки достаточно кратковременно нажать выключатель SA1 без фиксации. При этом конденсатор успевает зарядиться и открывает транзистор, который управляет включением реле. Время включения определяется емкостью конденсатора С и с указанным на схеме номиналом (4700 мФ) составляет около 4 минут. Увеличение времени включенного состояния достигается подключением дополнительных конденсаторов параллельно С.

Транзистор может быть любым n-p-n типа средней мощности или даже маломощным, типа КТ315. Это зависит от рабочего тока применяемого реле, которое также может быть любым другим на напряжение срабатывания 6-12 В и способным коммутировать нагрузку необходимой вам мощности. Можно использовать и транзисторы p-n-p типа, но нужно будет поменять полярность напряжения питания и включения конденсатора С. Резистор R также влияет в небольших пределах на время срабатывания и может быть номиналом 15 … 47 кОм в зависимости от типа транзистора.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Электронная утка
VT1, VT2 Биполярный транзистор

КТ361Б

2 МП39-МП42, КТ209, КТ502, КТ814 В блокнот
HL1, HL2 Светодиод

АЛ307Б

2 В блокнот
C1 100мкФ 10В 1 В блокнот
C2 Конденсатор 0.1 мкФ 1 В блокнот
R1, R2 Резистор

100 кОм

2 В блокнот
R3 Резистор

620 Ом

1 В блокнот
BF1 Акустический излучатель ТМ2 1 В блокнот
SA1 Геркон 1 В блокнот
GB1 Элемент питания 4.5-9В 1 В блокнот
Имитатор звука подскакивающего металлического шарика
Биполярный транзистор

КТ361Б

1 В блокнот
Биполярный транзистор

КТ315Б

1 В блокнот
C1 Электролитический конденсатор 100мкФ 12В 1 В блокнот
C2 Конденсатор 0.22 мкФ 1 В блокнот
Динамическая головка ГД 0.5...1Ватт 8 Ом 1 В блокнот
GB1 Элемент питания 9 Вольт 1 В блокнот
Имитатор звука мотора
Биполярный транзистор

КТ315Б

1 В блокнот
Биполярный транзистор

КТ361Б

1 В блокнот
C1 Электролитический конденсатор 15мкФ 6В 1 В блокнот
R1 Переменный резистор 470 кОм 1 В блокнот
R2 Резистор

24 кОм

1 В блокнот
T1 Трансформатор 1 От любого малогабаритного радиоприемника В блокнот
Универсальный имитатор звуков
DD1 Микросхема К176ЛА7 1 К561ЛА7, 564ЛА7 В блокнот
Биполярный транзистор

КТ3107К

1 КТ3107Л, КТ361Г В блокнот
C1 Конденсатор 1 мкФ 1 В блокнот
C2 Конденсатор 1000 пФ 1 В блокнот
R1-R3 Резистор

330 кОм

1 В блокнот
R4 Резистор

10 кОм

1 В блокнот
Динамическая головка ГД 0.1...0.5Ватт 8 Ом 1 В блокнот
GB1 Элемент питания 4.5-9В 1 В блокнот
Фонарь-мигалка
VT1, VT2 Биполярный транзистор

Устройство, схема которого представлена на рисунке ниже, вырабатывает сложный сигнал звуковой частоты, напоминающий птичье пение. Основой для него послужил несколько необычный несимметричный ждущий мультивибратор, собранный на двух биполярных кремниевых транзисторах разной проводимости. Источник питания GB1 (батарея "Корунд") через разъем X1 постоянно подключен к каскаду на транзисторе VT2, который отделен от первого каскада на транзисторе VT1 нормально разомкнутой кнопкой SB1. Особенность устройства - наличие трех времязадающих цепей, чем, собственно, и обусловлен характер звукового эффекта. У имитатора отсутствует общий выключатель питания, поскольку ток потребления в режиме ожидания не превышает 0,1 мкА, а это значительно меньше тока саморазряда батареи.

Работает устройство так. Стоит только нажать на кнопку SB1, и конденсатор С1 зарядится до напряжения батареи GB1. После отпускания кнопки конденсатор станет питать транзистор VT1. Он откроется, и через его переход "коллектор-эмиттер" потечет ток базы VT2, который также откроется. Тут вступает в действие RC-цепочка положительной обратной связи, составленная из резистора R2 и конденсатора С2, и генератор возбуждается. Поскольку вход генератора относительно высокоомный, а включенный последовательно с конденсатором С2 резистор R2 имеет большое сопротивление, последует импульс тока значительной длительности. Он, в свою очередь, окажется заполненным "паузой" более коротких импульсов, частота которых лежит в пределах звукового диапазона. Возникают эти колебания благодаря наличию параллельного LC-контура, состоящего из индуктивности обмотки капсюля BF1, его собственной емкости и емкости конденсатора С3, включенного по переменному току параллельно обмотке BF1. Из-за нелинейности процесса заряда-разряда конденсаторов С2 и С3 звуковые колебания будут дополнительно модулироваться по частоте и амплитуде. В результате формируется звук, воспроизводимый телефоном BF1 как свист, который непрерывно меняет тембр, а затем обрывается - следует пауза.

После разряда конденсатора С2 начинается новый цикл его заряда - генерация возобновляется. С каждым последующим звуком по мере убывания напряжения на конденсаторе С1 мелодия свиста становится иной, все чаще перемежаясь щелканьем, характерным для птичьего пения, а громкость постепенно снижается. Под конец "трели" слышно несколько тихих, нежных, затухающих свистов. После чего напряжение на базе VT1 станет ниже порога его открывания (около 0,6-0,7 В), оба гальванически связанных транзистора закрываются, и звук прекращается.

Спустя некоторое время конденсатор С1 полностью разрядится (через собственное внутреннее сопротивление, резистор R1, транзистор VT1 и эмиттерный переход VT2), образованная элементами R1, С1, VT1 цепь оказывается подключенной между базой и эмиттером транзистора VT2, еще более его подзапирая и обеспечивая тем самым высокую экономичность устройства в режиме ожидания. Работу имитатора возобновляют, повторно нажав кнопку.

В устройстве можно использовать транзисторы серий КТ201, КТ301, КТ306, КТ312, КТ315, КТ316, КТ342 (VT1); КТ203, КТ208, КТ351, КТ352, КТ361 (VT2) со статическим коэффициентом передачи по току не менее 30. Резистор R1 любой малогабаритный, например МЛТ-0,125, подстроечный резистор - СПО-0,4, СП3-9а. Конденсаторы С2, С3 - МБМ (КЛС, К10-7В), С1-оксидный, например К50-6. Телефон BF1 - капсюль ДЭМШ-1, миниатюрный "наушник" ТМ-2А (в нем удаляют пластмассовую насадку - звуковод) или другой, но обязательно электромагнитный, с сопротивлением обмотки до 200 Ом; кнопка КМ1-1 или МП3.

Налаживание сводится к подбору положения движка подстроечного резистора, при котором воспроизводится нужный звуковой эффект.

Характер "пения" нетрудно изменить, подобрав опытным путем следующие элементы: С1 в пределах 20-100 мкФ (определяет общую продолжительность звучания), С2 в пределах 0,1-1 мкФ (длительность каждого отдельного звука). Кроме того, С2 и R1 (в пределах 470 кОм- 2,2 МОм) определяют длительность пауз между первым и последующими звуками. Тембровая окраска звуков зависит от емкости конденсатора С3 (1000 пФ-0,1 мкФ).

Моделист-Конструктор №8, 1989 г., стр.28

Схема (рис. 5.73 [Л42]) предназначена для работы с любым источником звукового сигнала и позволяет изменить спектр на выходе относительно входного. Например, из обычной разговорной речи сделать “компьютерный голос”. Достигается это за счет модуляции исходного сигнала прямоугольными импульсами, которые формирует генератор на микросхеме DA1 (рабочая частота у него выбрана около 10 Гц).

Рис. 5.73. Схема приставки для имитации “компьютерного” голоса

Возникающие при этом искажения создают новые частотные составляющие в спектре исходного сигнала, которые и меняют тембр звука, например голоса, делая его менее похожим на оригинал. Для получения нужного спектра может потребоваться регулировка элементов R3 и R2. Транзистор используется в качестве управляемого напряжением резистора и образует вместе с R4 управляемый напряжением аттенюатор.

Еще одна схема для изменения спектра сигнала показана на рис. 5.74 [Л40]. В ней звуковой сигнал модулируется с частотой 50-90 Гц (частота изменяется резистором R2), вырабатываемой микросхемой DA1. Чтобы не было сильных искажений и ухудшения разборчивости, входной сигнал не должен превышать уровень в 150 мВ и поступать от источника с низким выходным сопротивлением, например, от электродинамического микрофона. Выходной сигнал подается на любой внешний усилитель. При этом во многих случаях можно не устанавливать конденсаторы С4-С5 (если в звуковом сигнале нет постоянной составляющей).

Для создания некоторых устройств (стабилизации напряжения или скорости вращения электромотора, автоматического зарядного устройства и др.) может потребоваться преобразователь управляющего входного напряжения в ширину выходных импульсов. Вариант схемы такого узла приведен на рис. 5.75 [Л46], она обеспечивает точность преобразования не хуже 1 %.

Рис. 5.74. Второй вариант приставки для создания звуковых эффектов

Рис. 5.75. Схема преобразователя напряжение-ширина импульсов и диаграммы, поясняющие работу

Микросхема DA1 имеет отечественный аналог К140УД7 и работает в качестве интегратора разности напряжений Uвх и Uon, а на таймере DA2 собран одновибратор с запуском от внешнего тактового генератора. Резистор R2 служит для установки нужной минимальной ширины импульсов.

Литература:
Радиолюбителям: полезные схемы, Книга 5. Шелестов И.П.

Схемы простейших электронных устройств для начинающих радиолюбителей. Простые электронные игрушки и устройства которые могут быть полезны для дома. Схемы построены на основе транзисторов и не содержат деффицитных компонентов. Имитаторы голосов птиц, музыкальные инструменты, светомузыка на светодиодах и другие.

Генератор трелей соловья

Генератор трелей соловья, выполненный на асимметричном мультивибраторе, собран по схеме, приведенной на рис. 1. Низкочастотный колебательный контур, образованный телефонным капсюлем и конденсатором СЗ, периодически возбуждается импульсами, вырабатываемыми мультивибратором. В итоге формируются звуковые сигналы, напоминающие соловьиные трели. В отличие от предыдущей схемы звучание этого имитатора не управляемое и, следовательно, более однообраз ное. Тембр звучания можно подбирать, меняя емкость конденса тора СЗ.

Рис. 1. Генератор-иммитатор трелей соловья, схема устройства.

Электронный подражатель пения канарейки

Рис. 2. Схема электронного подражателя пения канарейки.

Электронный подражатель пения канарейки описан в книге Б.С. Иванова (рис. 2). В его основе также асимметричный мультивибратор. Основное отличие от предыдущей схемы — это RC-цепочка, включенная между базами транзисторов мультивибратора. Однако это несложное нововведение позволяет радикально изменить характер генерируемых звуков.

Имитатор кряканья утки

Имитатор кряканья утки (рис. 3), предложенный Е. Бри-гиневичем, как и другие схемы имитаторов, реализован на асимметричном мультивибраторе [Р 6/88-36]. В одно плечо мультивибратора включен телефонный капсюль BF1, а в другое — последовательно соединенные светодиоды HL1 и HL2.

Обе нагрузки работают поочередно: то издается звук, то вспыхивают светодиоды — глаза «утки». Тональность звука подбирается резистором R1. Выключатель устройства желательно выполнить на основе магнитоуправляемого контакта, можно самодельного.

Тогда игрушка будет включаться при поднесении к ней замаскированного магнита.

Рис. 3. Схема имитатора кряканья утки.

Генератор «шума дождя»

Рис. 4. Принципиальная схема генератора "шума дождя" на транзисторах.

Генератор «шума дождя», описанный в монографии В.В. Мацкевича (рис. 4), вырабатывает звуковые импульсы, поочередно воспроизводимые в каждом из телефонных капсюлей. Эти щелчки отдаленно напоминают падение капель дождя на подоконник.

Для того чтобы придать случайность характеру падения капель, схему (рис. 4) можно усовершенствовать, введя, например, последовательно с одним из резисторов канал полевого транзистора. Затвор полевого транзистора будет представлять собой антенну, а сам транзистор будет являться управляемым переменным резистором, сопротивление которого будет зависеть от напряженности электрического поля вблизи антенны.

Электронный барабан-приставка

Электронный барабан — схема, генерирующая звуковой сигнал соответствующего звучания при прикосновении к сенсорному контакту (рис. 5) [МК 4/82-7]. Рабочая частота генерации находится в пределах 50...400 Гц и определяется параметрами RC-элементов устройства. Подобные генераторы могут быть использованы для создания простейшего электромузыкального инструмента с сенсорным управлением.

Рис. 5. Принципиальная схема электронного барабана.

Электронная скрипка с сенсорным управлением

Рис. 6. Схема электронной скрипки на транзисторах.

Электронная «скрипка» сенсорного типа представлена схемой, приведенной в книге Б.С. Иванова (рис. 6). Если к сенсорным контактам «скрипки» приложить палец, включается генератор импульсов, выполненный на транзисторах VT1 и VT2. В телефонном капсюле раздастся звук, высота которого определяется величиной электрического сопротивления участка пальца, приложенного к сенсорным пластинкам.

Если сильнее прижать палец, его сопротивление понизится, соответственно возрастет высота звукового тона. Сопротивление пальца зависит также от его влажности. Изменяя степень прижатия пальца к контактам, можно исполнять незамысловатую мелодию. Начальную частоту генератора устанавливают потенциометром R2.

Электромузыкальный инструмент

Рис. 7. Схема простого самодельного электромузыкального инструмента.

Электромузыкальный инструмент на основе мультивибратора [В.В. Мацкевич] вырабатывает электрические импульсы прямоугольной формы, частота которых зависит от величины сопротивления Ra — Rn (рис. 7). При помощи подобного генератора можно синтезировать звуковую гамму в пределах одной-двух октав.

Звучание сигналов прямоугольной формы очень напоминает органную музыку. На основе этого устройства может быть создана музыкальная шкатулка или шарманка. Для этого на диск, вращаемый ручкой или электродвигателем, наносят по окружности контакты различной длины.

К этим контактам напаивают предварительно подобранные резисторы Ra — Rn, которые определяют частоту импульсов. Длина контактной полоски задает длительность звучания той или иной ноты при скольжении общего подвижного контакта.

Простая цветомузыка на светодиодах

Устройство цветомузыкального сопровождения с разноцветными светодиодами, так называемая «мигалка», украсит музыкальное звучание дополнительным эффектом (рис. 8).

Входной сигнал звуковой частоты простейшими частотными фильтрами разделяется на три канала, условно называемые низкочастотным (светодиод красного свечения); среднечастотным (светодиод зеленого. свечения) и высокочастотным (желтый светодиод).

Высокочастотная составляющая выделяется цепочкой С1 и R2. «Среднечастотная» компонента сигнала выделяется LC-фильтром последовательного типа (L1, С2). В качестве катушки индуктивности фильтра можно использовать старую универсальную головку от магнитофона, либо обмотку малогабаритного трансформатора или дросселя.

В любом случае при настройке устройства потребуется индивидуальный подбор емкости конденсаторов С1 — СЗ. Низкочастотная составляющая звукового сигнала беспрепятственно проходит через цепь R4, СЗ на базу транзистора VT3, управляющего свечением «красного» светодиода. Токи «высокой» частоты закорачиваются конденсатором СЗ, т.к. он имеет для них крайне малое сопротивление.

Рис. 8. Простая цветомузыкальная установка на транзисторах и светодиодах.

Электронная игрушка "угадай цвет" на светодиодах

Электронный автомат предназначен для отгадывания цвета включившегося светодиода (рис. 9) [Б.С. Иванов]. Устройство содержит генератор импульсов — мультивибратор на транзисторах VT1 и VT2, связанный с триггером на транзисторах VT3, VT4. Триггер, или устройство с двумя устойчивыми состояниями, поочередно переключается после каждого из пришедших на его вход импульсов.

Соответственно, поочередно высвечиваются и разноцветные светодиоды, включенные в каждое из плеч триггера в качестве нагрузки. Поскольку частота генерации достаточно высока, мигание светодиодов при включении генератора импульсов (нажатии на кнопку SB1) сливается в непрерывное свечение. Если отпустить кнопку SB1, генерация прекращается. Триггер устанавливается в одно из двух возможных устойчивых состояний.

Поскольку частота переключений триггера была достаточно велика, заранее предсказать, в каком состоянии окажется триггер, невозможно. Хотя из каждого правила есть исключения. Играющим предлагается определить (предсказать), какой именно цвет появится после очередного запуска генератора.

Либо предлагается угадать, какой цвет загорится после отпускания кнопки. При большом наборе статистики вероятность равновесного, равновероятного высвечивания светодиодов должна приблизиться к значению 50:50. Для малого числа попыток это соотношение может не выполняться.

Рис. 9. Принципиальная схема электронной игрушки на светодиодах.

Электронная игрушка "у кого лучше реакция"

Электронное устройство, позволяющее сопоставить скорость реакции двух испытуемых [Б.С. Иванов], может быть собрано по схеме, приведенной на рис. 10. Первым высвечивается индикатор — светодиод того, кто первый нажмет «свою» кнопку.

В основе устройства триггер на транзисторах VT1 и VT2. Для повторного тестирования скорости реакции питание устройства следует кратковременно отключить дополнительной кнопкой.

Рис. 10. Принципиальная схема игрушки "у кого лучше реакция".

Самодельный фототир

Рис. 11. Принципиальная схема фототира.

Светотир С. Гордеева (рис. 11) позволяет не только играть, но и тренироваться [Р 6/83-36]. Фотоэлемент (фотосопротивление, фотодиод — R3) направляют на светящуюся точку или солнечный зайчик и нажимают спусковой крючок (SA1). Конденсатор С1 разряжается через фотоэлемент на вход генератора импульсов, работающего в ждущем режиме. В телефонном капсюле раздается звук.

Если наводка неточна, и сопротивление резистора R3 велико, то энергии разряда недостаточно для запуска генератора. Для фокусировки света необходима линза.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.