Генератор частоты на схеме 555. Генератор прямоугольных импульсов на NE555

Как-то попросили меня сделать простую мигалку, чтоб реле управлять или маломощной лампочкой мигать. Собирать простейший мультивибратор, будь то симметричный или не симметричный, как-то банально, да и схема нестабильна и не совсем надежна, при том что работать она должна при напряжение 24 вольта в грузовом автомобиле, да и еще размеры иметь не слишком большие.

Схема

Поискав по сети схемы, решил по даташиту включить популярную микросхему NE555N. Прецизионный таймер, стоимость которого очень мала - порядка 10 рубликов за микросхему в дип корпусе! Но так как нагрузка у нас не совсем слабая, и может потребоваться большие токи относительно питания таймера, то нам нужен какой-то ключ, которым и будет управлять сам таймер.

Можно взять обычный транзистор, но он будет греться ввиду больших потерь из-за больших падений на переходах - поэтому взял высоковольтный полевой транзистор на несколько ампер тока, такому ключу при токе даже в 2 ампера не потребуется радиатор вообще.

Сам таймер 555 имеет ограничения в питающем напряжение - порядка 18 вольт, хотя уже и при 15 может смело вылететь, поэтому собираем цепочку из ограничительного резистора и стабилитрона с фильтрующим конденсатором по входу питания!

В схему введен регулятор, дабы можно было вращая ручку регулятора изменить частоту импульсов вспышки лампочки или срабатывания реле. Если же регулировка не требуется, можно подстроить частоту на нужные, замерить сопротивление и впаять потом готовое. На приведённой выше - сразу 2 регулятора, которыми меняется скважность (отношение включенного состояния выхода к выключенному). Если требуется соотношение 1:1 - убираем всё кроме одного переменного резистора.

Видео

Часть элементов выполнено в дип корпусах, часть в смд - для компактности и лучшей компоновки в целом. Схема генератора импульсов заработала после включения практически сразу, осталось только подстроить под нужную частоту. Плату желательно залить термоклеем или поставить в корпус из пластика, дабы автовладельцы не догадались ее прикрутить напрямую к корпусу или положить на что-то металлическое.

Для начинающих радиолюбителей переход от создания простейших схем с применением резисторов, конденсаторов, диодов к созданию печатных плат с различными микросхемами, означает переход на новый уровень мастерства. Однако при этом схемы основываются на базе простейших микросхем, одной из которых является микросхема интегрального таймера NE555.

Изучение любой микросхемы следует начинать с фирменной документации - DATA SHEET. Для начала следует обратить внимание на расположение выводов и их назначение для таймер NE555 (рисунок 1). Иностранные компании, как правило, не предоставляют принципиальные схемы своих устройств. Однако микросхема таймера NE555 является достаточно популярной и имеет свой отечественный аналог КР1006ВИ1, схема которого представлена на рисунке 2.

Рисунок 1

1. Одновибратор на базе NE555 (рисунок 3).

Рисунок 3

Работа схемы: на вывод 2 микросхемы подается импульс низкого уровня. На выходе 3 микросхемы получается прямоугольный импульс, длительность которого определяется времязадающей RC-цепочкой (ΔT = 1,1*R*C). Сигнал высокого уровня на выводе 3 формируется до тех пор, пока не зарядится времязадающий конденсатор С до напряжения 2/3Uпит. Диаграммы работы одновибратора показаны на рисунке 4. Для формирования импульса запуска работы микросхемы можно воспользоваться механической кнопкой (рисунок 5) или полупроводниковым элементом.

Рисунок 4

Рисунок 5

Назначение схемы одновибратора на базе микросхемы интегрального таймера NE555 – создание временных выдержек от нескольких миллисекунд до нескольких часов.

2 Генераторы на базе интегрального таймера NE555

Генератор на базе NE555 способен вырабатывать импульсы с максимальной частотой в несколько килогерц для прямоугольных импульсов и с частотой в несколько мегагерц для импульсов не прямоугольной формы. Частота, как и в случае с одновибратором, будет определяться параметрами времязадающей цепи.

2.1 Генератор импульсов формы меандр на базе NE555

Схема такого генератора представлена на рисунке 6, а временные диаграммы работы генератора на рисунке 7. Отличительной особенностью генератора импульсов формы меандр является то, что время импульса и время паузы равны между собой.

Рисунок 6

Рисунок 7

Принцип действия схемы аналогичен схеме одновибратора. Исключение составляет лишь отсутствующий импульс запуска работы микросхемы таймера на выводе 2. Частота вырабатываемых импульсов определяется выражением f = 0,722/(R1*C1).

2.2 Генератор импульсов с регулируемой скважностью на базе NE555

Регулирование скважности вырабатываемых импульсов позволяет строить на базе NE555 широтно-импульсные генераторы. Скважность определяется отношением времени импульса к длительности импульса. Обратной величиной скважности является коэффициент заполнения (англ. Duty cycle). Схема генератора импульсов с регулируемой скважностью на базе NE555 представлена на рисунке 8.

Рисунок 8

Принцип работы схемы: время импульса и время паузы определяется временем заряда конденсатора С1. Сигнал высокого уровня формируется при заряде С1 по цепи R1-RP1-VD1. При достижении напряжения 2/3Uпит таймер переключается и конденсатор С1 разряжается по цепи VD2-RP1-R1. По достижению 1/3Uпит таймер снова переключается и цикл повторяется.

Регулировка времени заряда и разряда конденсатора С1 осуществляется переменным резистором RP1. При этом происходит изменение скважности выходных импульсов при постоянном периоде следования импульса.

Для проверки работоспособности микросхемы интегрального таймера NE555 можно собрать схему, представленную на рисунке 9 (схема в симуляторе Multisim).

Рисунок 9

Регулировка выходного напряжения осуществляется переменным резистором R1. На приведенной схеме достаточно просто разобраться в алгоритме работы таймера. При величине питающего напряжения 12В опорное значение напряжения для переключения микросхемы составляет 4В и 8В. При напряжении 7,8В (Рисунок 10) на выходе таймера – высокий уровень сигнала (светодиод LED1 не горит). При достижении 8В (рисунок 11) произойдет переключение микросхемы – загорается светодиод LED1. Дальнейшее увеличение напряжение никаких изменений в работе таймера не вызовет.

И вот, наконец, дошли руки. После сборок мелких катушек решил замахнуться на новую схему, более серьезную и сложную в настройке и работе. Перейдем от слов к делу. Полная схема выглядит так:

Работает по принципу автогенератора. Прерыватель пинает драйвер UCC27425 и начинается процесс. Драйвер подает импульс на GDT (Gate Drive Transformator - дословно: трансформатор, управляющий затворами) с GDT идут 2 вторичные обмотки включенные в противофазе. Такое включение обеспечивает попеременное открытие транзисторов. Во время открытия транзистор прокачивает ток через себя и конденсатор 4,7 мкФ. В этот момент на катушке образуется разряд, и сигнал идет по ОС в драйвер. Драйвер меняет направление тока в GDT и транзисторы меняются (который был открытым - закрывается, а второй открывается). И этот процесс повторяется до тех пор, пока идет сигнал с прерывателя.

GDT лучше всего мотать на импортном кольце - Epcos N80. Обмотки мотаются в соотношении 1:1:1 или 1:2:2. В среднем порядка 7-8 витков, при желании можно рассчитать. Рассмотрим RD цепочку в затворах силовых транзисторов. Эта цепочка обеспечивает Dead Time (мертвое время). Это время когда оба транзистора закрыты. То есть один транзистор уже закрылся, а второй еще не успел открыться. Принцип такой: через резистор транзистор плавно открывается и через диод быстро разряжается. На осциллограмме выглядит примерно так:

Если не обеспечить dead time то может получиться так, что оба транзистора будут открыты и тогда обеспечен взрыв силовой.

Идем дальше. ОС (обратная связь) выполнена в данном случае в виде ТТ (трансформатора тока). ТТ наматывается на ферритовом кольце марки Epcos N80 не менее 50 витков. Через кольцо продергивается нижний конец вторичной обмотки, который заземляется. Таким образом высокий ток со вторичной обмотки превращается в достаточный потенциал на ТТ. Далее ток с ТТ идет на конденсатор (сглаживает помехи), диоды шоттки (пропускают только один полупериод) и светодиод (выполняет роль стабилитрона и визуализирует генерацию). Чтобы была генерация необходимо также соблюдать фразировку трансформатора. Если нет генерации или очень слабая - нужно просто перевернуть ТТ.

Рассмотрим отдельно прерыватель. С прерывателем конечно я попотел. Собрал штук 5 разных... Одни пучит от ВЧ тока, другие не работают как надо. Далее расскажу про все прерыватели, которые делал. Начну пожалуй с самого первого - на TL494 . Схема стандартная. Возможна независимая регулировка частоты и скважности. Схема ниже может генерировать от 0 до 800-900 Гц, если поставить вместо 1 мкФ конденсатор 4,7 мкФ. Скважность от 0 и до 50. То что нужно! Однако есть одно НО. Этот ШИМ контроллер очень чувствителен к ВЧ току и различным полям от катушки. В общем при подключении к катушке, прерыватель просто не работал, либо все по 0 либо CW режим. Экранирование частично помогло, но не решило проблему полностью.

Следущий прерыватель был собран на UC3843 очень часто встречается в ИИП, особенно АТХ, оттуда, собственно, его и взял. Схема тоже неплохая и не уступает TL494 по параметрам. Здесь возможна регулировка частоты от 0 до 1кГц и скважность от 0 до 100%. Меня это тоже устраивало. Но опять эти наводки с катушки все испортили. Здесь даже экранирование нисколько не помогло. Пришлось отказаться, хотя собрал добротно на плате...

Надумал вернуться к дубовым и надежным, но малофункциональным 555 . Решил начать с burst interrupter. Суть прерывателя заключается в том, что он прерывает сам себя. Одна микросхема (U1) задает частоту, другая (2) длительность, а третья (U3) время работы первых двух. Все бы ничего, если бы не маленькая длительность импульса с U2. Этот прерыватель заточен под DRSSTC и может работать с SSTC но мне это не понравилось- разряды тоненькие, но пушистые. Далее было несколько попыток увеличить длительность, но они не увенчались успехом.

Схемы генераторов на 555

Тогда решил изменить принципиально схему и сделать независимую длительность на конденсаторе, диоде и резисторе. Возможно многие посчитают эту схему абсурдной и глупой, но это работает. Принцип такой: сигнал на драйвер идет до тех пор пока конденсатор не зарядится (с этим думаю никто не поспорит). NE555 генерирует сигнал, он идет через резистор и конденсатор, при этом если сопротивление резистора 0 Ом, то идет только через конденсатор и длительность максимальна (на сколько хватает емкости) не зависимо от скважности генератора. Резистор ограничивает время заряда, т.е. чем больше сопротивление, тем меньшей времени будет идти импульс. На драйвер идет сигнал меньшей длительностью, но тоже частоты. Разряжается конденсатор быстро через резистор (который на массу идет 1к) и диод.

Плюсы и минусы

Плюсы : независимая от частоты регулировка скважности, SSTC никогда не уйдет в CW режим, если подгорит прерыватель.

Минусы : скважность нельзя увеличивать "бесконечно много", как например на UC3843 , она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора). Ток через конденсатор идет плавно.

На последнее не знаю как драйвер реагирует (плавную зарядку). С одной стороны драйвер также плавно может открывать транзисторы и они будут сильнее греться. С другой стороны UCC27425 - цифровая микросхема. Для нее существует только лог. 0 и лог. 1. Значит пока напряжение выше порогового - UCC работает, как только опустилось ниже минимального - не работает. В этом случае все работает в штатном режиме, и транзисторы открываются полностью.


Перейдем от теории к практике

Собирал генератор Тесла в корпус от АТХ. Конденсатор по питанию 1000 мкф 400в. Диодный мост из того же АТХ на 8А 600В. Перед мостом поставил резистор 10 Вт 4,7 Ом. Это обеспечивает плавный заряд конденсатора. Для питания драйвера поставил трансформатор 220-12В и еще стабилизатор с конденсатором 1800 мкФ.

Диодные мосты прикрутил на радиатор для удобства и для отвода тепла, хотя они почти не греются.

Прерыватель собрал почти навесом, взял кусок текстолита и канцелярским ножом вырезал дорожки.

Силовая была собрана на небольшом радиаторе с вентилятором, позже выяснилось, что этого радиатора вполне достаточно для охлаждения. Драйвер смонтировал над силовой через толстый кусок картона. Ниже фото почти собранной конструкции генератора Тесла, но находящейся на проверке, измерял температуру силовой при различных режимах (видно обычный комнатный термометр, прилепленный к силовой на термопласту).

Тороид катушки собран из гофрированной пластиковой трубы диаметром 50 мм и обклеенным алюминиевым скотчем. Сама вторичная обмотка намотана на 110 мм трубе высотой 20 см проводом 0,22 мм около 1000 витков. Первичная обмотка содержит аж 12 витков, сделал с запасом, дабы уменьшить ток через силовую часть. Делал с 6 витками в начале, результат почти одинаков, но думаю не стОит рисковать транзисторами ради пары лишних сантиметров разряда. Каркасом первички служит обычный цветочный горшок. С начала думал что не будет пробивать если вторичку обмотать скотчем, а первичку поверх скотча. Но увы, пробивало... В горшке конечно тоже пробивало, но здесь скотч помог решить проблему. В общем готовая конструкция выглядит так:

Ну и несколько фоток с разрядом

Теперь вроде бы все.

Ещё несколько советов: не пытайтесь сразу воткнуть в сеть катушку, не факт что она сразу заработает. Постоянно следите за температурой силовой, при перегреве может бабахнуть. Не мотайте слишком высокочастотные вторички, транзисторы 50b60 могут работать максимум на 150 кГц по даташиту, на самом деле немного больше. Проверяйте прерыватели, от них зависит жизнь катушки. Найдите максимальную частоту и скважность, при которой температура силовой стабильная длительное время. Слишком большой тороид может тоже вывести из строя силовую.

Видео работы SSTC

P.S. Транзисторы силовые использовал IRGP50B60PD1PBF. Файлы проекта . Удачи, с вами был [)еНиС !

Обсудить статью ТЕСЛА ГЕНЕРАТОР

Потребовалось мне сделать регулятор скорости для пропеллера. Чтобы дым от паяльника сдувать, да морду лица вентилировать. Ну и, для прикола, уложить все в минимальную стоимость. Проще всего маломощный двигатель постоянного тока, конечно, регулировать переменным резистором, но найти резюк на такой малый номинал, да еще нужной мощности это надо сильно постараться, да и стоить он будет явно не десять рублей. Поэтому наш выбор ШИМ + MOSFET.

Ключ я взял IRF630 . Почему именно этот MOSFET ? Да просто у меня их откуда то завелось штук десять. Вот и применяю, так то можно поставить что либо менее габаритное и маломощное. Т.к. ток тут вряд ли будет больше ампера, а IRF630 способен протащить через себя под 9А. Зато можно будет сделать целый каскад из вентиляторов, подсоединив их к одной крутилке — мощи хватит:)

Теперь пришло время подумать о том, чем мы будем делать ШИМ . Сразу напрашивается мысль — микроконтроллером. Взять какой-нибудь Tiny12 и сделать на нем. Мысль я эту отбросил мгновенно.

  1. Тратить такую ценную и дорогую деталь на какой то вентилятор мне западло. Я для микроконтроллера поинтересней задачу найду
  2. Еще софт под это писать, вдвойне западло.
  3. Напряжение питания там 12 вольт, понижать его для питания МК до 5 вольт это вообще уже лениво
  4. IRF630 не откроется от 5 вольт, поэтому тут пришлось бы еще и транзистор ставить, чтобы он подавал высокий потенциал на затвор полевика. Нафиг нафиг.
Остается аналоговая схема. А что, тоже неплохо. Наладки не требует, мы же не высокоточный девайс делаем. Детали тоже минимальные. Надо только прикинуть на чем делать.

Операционные усилители можно отбросить сразу. Дело в том, что у ОУ общего назначения уже после 8-10кГц, как правило, предельное выходное напряжение начинает резко заваливаться, а нам надо полевик дрыгать. Да еще на сверхзвуковой частоте, чтобы не пищало.


ОУ лишенные такого недостатка стоят столько, что на эти деньги можно с десяток крутейших микроконтроллеров купить. В топку!

Остаются компараторы, они не обладают способностью операционника плавно менять выходное напряжение, могут только сравнивать две напруги и замыкать выходной транзистор по итогам сравнения, но зато делают это быстро и без завала характеристики. Пошарил по сусекам и компараторов не нашел. Засада! Точнее был LM339 , но он был в большом корпусе, а впаивать микросхему больше чем на 8 ног на такую простую задачу мне религия не позволяет. В лабаз тащиться тоже было влом. Что делать?

И тут я вспомнил про такую замечательную вещь как аналоговый таймер — NE555 . Представляет собой своеобразный генератор, где можно комбинацией резисторов и конденсатором задавать частоту, а также длительность импульса и паузы. Сколько на этом таймере разной хрени сделали, за его более чем тридцатилетнюю историю… До сих пор эта микросхема, несмотря на почтенный возраст, штампуется миллионными тиражами и есть практически в каждом лабазе по цене в считанные рубли. У нас, например, он стоит около 5 рублей. Порылся по сусекам и нашел пару штук. О! Щас и замутим.


Как это работает
Если не вникать глубоко в структуру таймера 555, то несложно. Грубо говоря, таймер следит за напряжением на конденсаторе С1, которое снимает с вывода THR (THRESHOLD — порог). Как только оно достигнет максимума (кондер заряжен), так открывается внутренний транзистор. Который замыкает вывод DIS (DISCHARGE — разряд) на землю. При этом на выходе OUT появляется логический ноль. Конденсатор начинает разряжаться через DIS и когда напряжение на нем станет равно нулю (полный разряд) система перекинется в противоположное состояние — на выходе 1, транзистор закрыт. Конденсатор начинает снова заряжаться и все повторяется вновь.
Заряд конденсатора С1 идет по пути: «R4->верхнее плечо R1 ->D2 «, а разряд по пути: D1 -> нижнее плечо R1 -> DIS . Когда мы крутим переменный резистор R1 то у нас меняются соотношения сопротивлений верхнего и нижнего плеча. Что, соответственно, меняет отношение длины импульса к паузе.
Частота задается в основном конденсатором С1 и еще немного зависит от величины сопротивления R1.
Резистор R3 обеспечивает подтяжку выхода к высокому уровню — так так там выход с открытым коллектором. Который не способен самостоятельно выставить высокий уровень.

Диоды можно ставить любые совершенно, кондеры примерно такого номинала, отклонения в пределах одного порядка не влияют особо на качество работы. На 4.7нанофарадах, поставленных в С1, например, частота снижается до 18кГц, но ее почти не слышно, видать слух у меня уже не идеальный:(

Покопался в закромах, которая сама расчитывает параметры работы таймера NE555 и собрал схему оттуда, для астабильного режима со коэффициентом заполнения меньше 50%, да вкрутил там вместо R1 и R2 переменный резистор, которым у меня менялась скважность выходного сигнала. Надо только обратить внимание на то, что выход DIS (DISCHARGE) через внутренний ключ таймера подключен на землю, поэтому нельзя было его сажать напрямую к потенциометру , т.к. при закручивании регулятора в крайнее положение этот вывод бы сажался на Vcc. А когда транзистор откроется, то будет натуральное КЗ и таймер с красивым пшиком испустит волшебный дым, на котором, как известно, работает вся электроника. Как только дым покидает микросхему — она перестает работать. Вот так то. Посему берем и добавляем еще один резистор на один килоом. Погоды в регулировании он не сделает, а от перегорания защитит.

Сказано — сделано. Вытравил плату, впаял компоненты:

Снизу все просто.
Вот и печатку прилагаю, в родимом Sprint Layout —

А это напряжение на движке. Видно небольшой переходный процесс. Надо кондерчик поставить в параллель на пол микрофарады и его сгладит.

Как видно, частота плывет — оно и понятно, у нас ведь частота работы зависит от резисторов и конденсатора, а раз они меняются, то и частота уплывает, но это не беда. Во всем диапазоне регулирования она ни разу не влазит в слышимый диапазон. А вся конструкция обошлась в 35 рублей, не считая корпуса. Так что — Profit!

Микросхема интегрального таймера 555 была разработана 44 года назад, в 1971 году и до сих пор популярна. Пожалуй, ещё ни одна микросхема так долго не служила людям. Чего только на ней не собирали, даже поговаривают, что номер 555 - это число вариантов её применения:) Одно из классических применений 555 таймера - регулируемый генератор прямоугольных импульсов.
В этом обзоре будет описание генератора, конкретное применение будет в следующий раз.

Плату прислали запечатанной в антистатический пакетик, но микросхема очень дубовая и статикой её так просто не убить.


Качество монтажа нормальное, флюс не отмыт




Схема генератора стандартная для получения скважности импульсов ≤2


Красный светодиод подключен на выход генератора и при малой выходной частоте - мигает.
По китайской традиции, производитель забыл поставить ограничивающий резистор последовательно с верхним подстроечником. По спецификации, он должен быть не менее 1кОм, чтобы не перегружать внутренний ключ микросхемы, однако, реально схема работает и при меньшем сопротивлении - вплоть до 200 Ом, при котором происходит срыв генерации. Добавить ограничивающий резистор на плату затруднительно из-за особенности разводки печатной платы.
Диапазон рабочих частот выбирается установленной перемычной в одной из четырёх позиций
Частоты продавец указал неверно.


Реально измеренные частоты генератора при питающем напряжении 12В
1 - от 0,5Гц до 50Гц
2 - от 35Гц до 3,5kГц
3 - от 650Гц до 65кГц
4 - от 50кГц до 600кГц

Нижний резистор (по схеме) задаёт длительность паузы импульса, верхний резистор задаёт период следования импульсов.
Напряжение питания 4,5-16В, максимальная нагрузка на выходе - 200мА

Стабильность выходных импульсов на 2 и 3 диапазонах невысока из-за применения конденсаторов из сегнетоэлектрической керамики типа Y5V - частота сильно уползает не только при изменении температуры, но даже при изменении питающего напряжения (причём в разы). Рисовать графики не стал, просто поверьте на слово.
На остальных диапазонах стабильность импульсов приемлемая.

Вот что он выдаёт на 1 диапазоне
На максимальном сопротивлении подстроечников


В режиме меандр (верхний 300 Ом, нижний на максимуме)


В режиме максимальной частоты (верхний 300 Ом, нижний на минимум)


В режиме минимальной скважности импульсов (верхний подстроечник на максимуме, нижний на минимуме)

Для китайских производителей: добавьте ограничивающий резистор 300-390 Ом, замените керамический конденсатор 6,8мкФ на электролитический 2,2мкФ/50В, и замените конденсатор 0,1мкФ Y5V на более качественный 47нФ X5R (X7R)
Вот готовая доработанная схема


Себе генератор не переделывал, т.к. указанные недостатки для моего применения не критичны.

Вывод: полезность устройства выясняется, когда какая-либо Ваша самоделка потребует подать на неё импульсы:)
Продолжение следует…

Планирую купить +31 Добавить в избранное Обзор понравился +28 +58