Простой умзч на 3 полевых транзисторах. Предварительный усилитель на полевом транзисторе

Давно, еще года два назад, приобрел я старый советский динамик 35ГД-1. Несмотря на его первоначально плохое состояние, я его восстановил, покрасил в красивый синий цвет и даже сделал для него ящик из фанеры. Большая коробка с двумя фазоинверторами сильно улучшила его акустические качества. Осталось дело за хорошим усилителем, который будет качать эту колонку. Решил сделать не так, как делает большинство людей – купить готовый усилитель D–класса из Китая и установить его. Я решил сделать усилитель сам, но не какой-нибудь общепринятый на микросхеме TDA7294, да и вообще не на микросхеме, и даже не легендарный Ланзар, а очень даже редкий усилитель на полевых транзисторах. Да и в сети очень мало информации об усилителях на полевиках, вот и стало интересно, что это такое и как он звучит.

Сборка

Данный усилитель имеет 4 пары выходных транзисторов. 1 пара – 100 Ватт выходной мощности, 2 пары – 200 Ватт, 3 – 300 Ватт и 4, соответственно, 400 Ватт. Мне все 400 Ватт пока не нужны, но я решил поставить все 4 пары, дабы распределить нагрев и уменьшить рассеиваемую каждым транзистором мощность.

Схема выглядит так:

На схеме подписаны именно те номиналы компонентов, которые установлены у меня, схема проверена и работает исправно. Печатную плату прилагаю . Плата в формате Lay6.

Внимание! Все силовые дорожки обязательно залудить толстым слоем припоя, так как по ним будет течь весьма большой ток. Паяем аккуратно, без соплей, флюс отмываем. Силовые транзисторы необходимо установить на теплоотвод. Плюс данной конструкции в том, что транзисторы можно не изолировать от радиатора, а лепить все на один. Согласитесь, это здорово экономит слюдяные теплопроводящие прокладки, ведь на 8 транзисторов их ушло бы 8 штук (удивительно, но факт)! Радиатор является общим стоком всех 8 транзисторов и звуковым выходом усилителя, поэтому при установке в корпус не забудьте как-нибудь изолировать его от корпуса. Несмотря на отсутствие необходимости установки между фланцами транзисторов и радиатором слюдяных прокладок, это место необходимо промазать термопастой.

Внимание! Лучше сразу всё проверить перед установкой транзисторов на радиатор. Если вы прикрутите транзисторы к радиатору, а на плате будут какие либо сопли или непропаяные контакты, будет неприятно снова откручивать транзисторы и измазываться термопастой. Так что проверяйте всё сразу.

Биполярные транзисторы: T1 – BD139, T2 – BD140. Тоже нужно прикрутить к радиатору. Они греются не сильно, но все таки греются. Их тоже можно не изолировать от теплоотводов.

Итак, приступаем непосредственно к сборке. Детали располагаются на плате следующим образом:

Теперь я прилагаю фото разных этапов сборки усилителя. Для начала вырезаем кусок текстолита по размерам платы.

Затем накладываем изображение платы на текстолит и сверлим отверстия под радиодетали. Зашкуриваем и обезжириваем. Берем перманентный маркер, запасаемся изрядным количеством терпения и рисуем дорожки (ЛУТом делать не умею, вот и мучаюсь).

Вооружаемся паяльником, берём флюс, припой и лудим.

Отмываем остатки флюса, берём мультиметр и прозваниваем на предмет замыкания между дорожками там, где его быть не должно. Если всё в норме, приступаем к монтажу деталей.
Возможные замены.
Первым делом я прикреплю список деталей:
C1 = 1u
C2, C3 = 820p
C4, C5 = 470u
C6, C7 = 1u
C8, C9 = 1000u
C10, C11 = 220n

D1, D2 = 15V
D3, D4 = 1N4148

OP1 = КР54УД1А

R1, R32 = 47k
R2 = 1k
R3 = 2k
R4 = 2k
R5 = 5k
R6, R7 = 33
R8, R9 = 820
R10-R17 = 39
R18, R19 = 220
R20, R21 = 22k
R22, R23 = 2.7k
R24-R31 = 0.22

T1 = BD139
T2 = BD140
T3 = IRFP9240
T4 = IRFP240
T5 = IRFP9240
T6 = IRFP240
T7 = IRFP9240
T8 = IRFP240
T9 = IRFP9240
T10 = IRFP240

Первым делом можно заменить операционный усилитель на любой другой, даже импортный, с аналогичным расположением выводов. Конденсатор C3 нужен для подавления самовозбуждения усилителя. Можно поставить и побольше, что я и сделал впоследствии. Стабилитроны любые на 15 В и мощностью от 1 Вт. Резисторы R22, R23 можно ставить исходя из расчета R=(Uпит.-15)/Iст., где Uпит. – напряжение питания, Iст. – ток стабилизации стабилитрона. Резисторы R2, R32 отвечают за коэффициент усиления. С данными номиналами он где то 30 – 33. Конденсаторы C8, C9 – емкости фильтра – можно ставить от 560 до 2200 мкФ с напряжением не ниже чем Uпит.* 1.2 дабы не эксплуатировать их на пределе возможностей. Транзисторы T1, T2 – любая комплементарная пара средней мощности, с током от 1 А, например наши КТ814-815, КТ816-817 или импортные BD136-135, BD138-137, 2SC4793-2SA1837. Истоковые резисторы R24-R31 можно ставить и на 2 Вт, хоть и нежелательно, с сопротивлением от 0.1 до 0.33 ом. Силовые ключи менять не желательно, хотя можно и IRF640-IRF9640 или IRF630-IRF9630; можно на транзисторы с аналогичными пропускаемыми токами, емкостями затворов и, разумеется, таким же расположением выводов, хотя если паять на проводках, значение это не имеет. Больше менять тут вроде и нечего.

Первый запуск и настройка.

Первый запуск усилителя производим через страховочную лампу в разрыв сети 220 В. Обязательно закорачиваем вход на землю и не подключаем нагрузку. В момент включения лампа должна вспыхнуть и погаснуть, причем погаснуть полностью: спираль не должна светиться вообще. Включаем, держим секунд 20, затем выключаем. Проверяем, нет ли нагрева чего-либо (хотя если лампа не горит, вряд ли что-нибудь греется). Если действительно ничего не греется, включаем снова и меряем постоянное напряжение на выходе: оно должно быть в пределах 50 – 70 мВ. У меня, к примеру, 61.5 мВ. Если всё в пределах нормы, подключаем нагрузку, подаём сигнал на вход и слушаем музыку. Не должно быть никаких помех, посторонних гулов и т. п. Если ничего этого нет, переходим к настройке.

Настраивается всё это дело крайне просто. Необходимо лишь выставить ток покоя выходных транзисторов с помощью вращения движка подстроечного резистора. Он должен быть примерно 60 – 70 мА для каждого транзистора. Делается это так же как и на Ланзаре. Ток покоя считается по формуле I = Uпад./R, где Uпад. – падение напряжения на одном из резисторов R24 – R31, а R – сопротивление этого самого резистора. Из этой формулы выводим напряжение падение на резисторе, необходимое для установки такого тока покоя. Uпад. = I*R. Например в моем случае это = 0.07*0.22 = где то 15 мВ. Ток покоя выставляется на “тёплом” усилителе, то есть радиатор должен быть тёплым, усилитель должен поиграть несколько минут. Усилитель прогрелся, отключаем нагрузку, закорачиваем вход на общий, берем мультиметр и проводим ранее описанную операцию.

Характеристики и особенности:

Напряжение питания – 30-80 В
Рабочая температура – до 100-120 град.
Сопротивление нагрузки – 2-8 Ом
Мощность усилителя – 400 Вт/4 Ом
КНИ – 0.02-0.04% при мощности 350-380 Вт
Коэффициент усиления – 30-33
Диапазон воспроизводимых частот – 5-100000 Гц

На последнем пункте стоит остановиться подробнее. Использование этого усилителя с шумящими тембрблоками, такими как TDA1524, может повлечь за собой необоснованное на первый взгляд потребление энергии усилителем. На самом деле это усилитель воспроизводит частоты помех, не слышные нашему уху. Может показаться, что это самовозбуждение, но скорее всего это именно помехи. Тут стоит отличать помехи, не слышимые ухом от реального самовозбуждения. Я сам столкнулся с этой проблемой. Изначально в качестве предварительного усилителя операционник TL071. Это очень хороший высокочастотный импортный ОУ с малошумящим выходом на полевых транзисторах. Он может работать на частотах до 4 МГц – этого с запасом хватает и для воспроизведения частот помех и для самовозбуждения. Что делать? Один хороший человек, спасибо ему огромное, посоветовал мне заменить операционник на другой, менее чувствительный и воспроизводящий меньший диапазон частот, который просто не может работать на частоте самовозбуждения. Поэтому я купил наш отечественный КР544УД1А, поставил и… ничего не поменялось. Это всё натолкнуло меня на мысль, что шумят переменные резисторы тембрблока. Движки резисторов немного “шуршат”, что и вызывает помехи. Убрал тембрблок и шум пропал. Так что это не самовозбуждение. С данным усилителем нужно ставить малошумящий пассивный тембрблок и транзисторный предусилитель дабы избежать вышеперечисленного.

Несколько слов об ошибках монтажа:
В целях улучшения читаемости схем расмотрим усилитель мощности с двумя парами оконечных полевых транзисторов и питании ±45 В.
В качестве первой ошибки попробуем "запаять" стабилитроны VD1 и VD2 не правильной полярностью (правильное включение показано на рисунке 11). Карта напряжений приобретет вид, показанный на рисунке 12.

Рисунок 11 Цоколевка стабилитронов BZX84C15 (впрочем и на диодах цоколевка такая же).


Рисунок 12 Карта напряжений усилителя мощности при неправильном монтаже стабилитронов VD1 и VD2.

Данные стабилитроны нужны для формирования напряжения питания операционного усилителя и выбраны на 15 В исключительно из за того, что это напряжение является для данного операционного усилителя оптимальным. Работоспособность без потери качества усилитель сохраняет и при использовании рядом стоящих по линейке номиналов - на 12 В, на 13 В, на 18 В (но не более 18 В ). При неправильном монтаже вместо положенного напряжения питания опреционный усилитель получает лишь напряжение падения на n-p переходе стаблитронов. Ток покая регулируется нормально, на выходе усилителя присутсвует небольшое постоянное напряжение, выходной сигнал отсутсвует.
Так же возможен не правильный монтаж диодов VD3 и VD4. В этом случае ток покоя ограничивается лишь номиналами резисторов R5, R6 и может достигать критической величины. Сигнал на выходе усилителя будет, но довольно быстрый нагрев оконечных транзисторов однозначно повлечет их перегрев и выход усилителя из строя. Карта напряжений и токов дляэтой ошибки показаны на рисунка 13 и 14.


Рисунок 13 Карта напряжений усилителя при неправильном монтаже диодов термостабилизации.


Рисунок 14 Карта токов усилителя при неправильном монтаже диодов термостабилизации.

Следующей популярной ошибкой монтажа может быть неправильный монтаж транзисторов предпоследнего каскада (драйверов). Карта напряжений усилителя в этом случае приобретает вид, показанный на рисунке 15. В этом случае транзисторы оконечного касада полностью закрыты и на выходе усилителя наблюдается отсутсвие каких либо признаков звука, а уровень постоянного напряжения максимально приближен к нулю.


Рисунок 15 Карта напряжений при неправильном монтаже транзисторов драйверного каскада.

Далее самая опасная ошибка - попутаны местами транзисторы драйверного каскада, причем цоколевка тоже попутана в следствии чего прилагаемое к выводам транзисторов VT1 и VT2 является верным и они работают в режиме эмиттерных повторителей. В этом случае ток через оконечный каскад зависит от положения движка подстроечного резистора и может быть от 10 до 15 А, что в любом случае вызовет перегрузку блока питания и быстрый разогрев оконечных транзисторов. На рисунке 16 показаны токи при среднем положении подстроечного резистора.


Рисунок 16 Карта токов при неправильном монтаже транзистров драйверного каскада, цоколевка тоже попутана.

Запаять "наоборот" вывода оконечных полевых транзисторов IRFP240 - IRFP9240 врядли получится, а вот поменять их местами получается довольно часто. В этом случае установленные в транзисторах диоды получаются в нелегкой ситуации - прилагаемое к ним напряжение имеет полярность соответсвующую их минимальному сопротивлению, что вызывает максимальное потребление от блока питания и как быстро они выгорят больше зависит от удачи чем от законов физики.
Фейверк на плате может случиться еще по одной причине - в продаже мелькают стабилитроны на 1,3 Вт в корпусе таком же как у диодов 1N4007, поэтому перед монтажом стабилитронов в плату, если они в черном корпусе стоит повнимательней ознакомиться с надписями на корпусе. При монтаже вместо стабилитронов диодов напряжение питания операционного усилителя ограничено лишь номиналами резисторов R3 и R4 и потребляемым током самого операционного усилителя. В любом случае получившаяся величина напряжения значительно больше максимального напряжения питания для данного ОУ, что влечет его выход из строя иногда с отстрелом части корпуса самого ОУ, ну а дальше возможно появление на его выходе постоянного напряжения, близкого в напряжению питания усилителя, что повлечет появление постоянного напряжения на выходе самого усилителя мощности. Как правило оконечный каскад в этом случае остается работоспособным.
Ну и на последок несколько слов о номиналах резисторов R3 и R4, которые зависят от от напряжения питания усилителя. 2,7 кОм является наиболее универсальным, однако при питании усилителя напряжением ±80 В (только на 8 Ом нагрузку) данные резисторы будут рассеивать порядка 1,5 Вт, поэтому его необходимо заменить на резистор 5,6 кОм или 6,2 кОм, что снизит выделяемую тепловую мощность до 0,7 Вт.


Э К Б BD135; BD137


З И С IRF240 - IRF9240

Данный усилитель заслуженно обрел своих поклоников и начал обретать новые версии. Прежде всего изменению подверглась цепочка формирования напряжения смещения первого транзисторного каскада. Кроме этого в схему была введена защита от прегерузки.
В результате доработок принципиальная схема усилителя мощности с полевыми транзисторами на выходе приобрела следующий вид:


УВЕЛИЧИТЬ

Варианты печатной платы приведены в графическом формате (необходимо масштабировать)

Внешний вид получившейся модификации усилителя мощности приведен на фотографиях ниже:

Осталось в эту бочку меда плескануть ложку дегтя...
Дело в том, что используемые в усилителе полевые транзисторы IRFP240 и IRFP9240 прекратила выпуск фирма разработчик International Rectifier (IR), которая прилагала больше внимания к качеству выпускаемой продукции. Основная проблема этих транзисторов - они разрабатывались для использования в источниках питания, но оказались вполне пригодными для звуковой усилительной аппаратуре. Повышенное внимание к качеству выпускамых компонентов со стороны International Rectifier позволяло не производя подбор транзисторов включать параллельно несколько транзисторов не беспокоясь об отличиях характеристик транзисторов - разброс не превышал 2%, что вполне приемлемо.
На сегодня транзисторы IRFP240 и IRFP9240 выпускаются фирмой Vishay Siliconix , которая не так трепетно относится к выпускаемой продукции и параметры транзисторов стали пригодными лишь для источников питания - разброс "коф усиления" транзисторов одной партии превышает 15%. Это исключает параллельное включение без предварительного отбора, а количество протестированных транзисторов для выбора 4 одинаковы переваливает несколько десятков экземпляров.
В связи с этим перед сборкой данного усилителя прежде всего следует выяснить какой фирмы транзисторы вы может достать. Если в Ваших магазинах в продаже Vishay Siliconix, то настоятельно рекомендуется отказаться от сборки данного усилителя мощности - Вы рискуете довольно серьезно потратиться и ни чего не добиться.
Однако и работа по разработке "ВЕРСИИ 2" этого усилителя мощности и отсутствие приличных и не дорогие полевых транзисторов для выходного каскада заставили немного поразмышлять над будущим этой схемотехники. В результате был смоделирована "ВЕРСИЯ 3", использующая вместо полевых транзисторов IRFP240 - IRFP9240 фирмы Vishay Siliconix биполярную пару от TOSHIBA - 2SA1943 - 2SC5200, которые на сегодня еще вполне приличного качества.
Принципиальная схема нового варианта усилителя вобрала доработки "ВЕРСИИ 2" и притерпела изменения в выходном каскаде, позволив отказаться от использования полевых транзисторов. Принципиальная схема приведена ниже:


Принципиальная схема с использованием полевых транзисторов в качестве повторителей УВЕЛИЧИТЬ

В данном варианте полевые транзисторы сохранились, но они используются в качестве повторителей напряжения, что существенно разгружает драйверный каскад. В систему защиты введена небольшая положительная связь, позволяющая избежать возбуждение усилителя мощности на границе срабатывания защиты.
Печатная плата в процессе разработки, орентировочно результаты реальных измерении и работоспособная печатная плата появятся в конце ноября, а пока можно предложить график измерения THD, полученный МИКРОКАП. Подробнее о данной программе можно почитать .


Данное устройство позволяет подключить динамический микрофон, электрогитару и прочие источники сигнала с высоким выходным сопротивлением к звуковой карте компьютера. Устройство не вносит частотных искажений в звуковом диапазоне частот, а также искажений, связанных с нелинейностью усилительного прибора, поскольку построена по схеме истокового повторителя.

Иными словами, если вас хоть немного заботит качество записываемого звука, у вас неплохая звуковая карта и дорогой микрофон, то это устройство – то, что вам необходимо.

Немного о схеме. Устройство начинает работать, если в разъем J1 вставляется моно-джэк, или, если по-научному, штекер диаметром 6,35 мм (1/4 дюйма). При этом через джек минусовой контакт батареи питания замыкается на минус питания и устройство начинает работу. Также вторым контактом этого штекера входной сигнал подается на резистор R1, обеспечивающий высокое входное сопротивление устройства. Конденсатор C2 производит частотную корректировку, обрезая частоты выше звукового диапазона. Резисторы R2-R4 обеспечивают необходимое смещение на затворе полевого транзистора.


В данной конструкции применен полевой транзистор КП303 с индексом Е. При использовании транзистора с другим индексом возможно придется уменьшить номиналы резисторов R3 и R4. Резистор R5 является нагрузкой усилительного каскада, с него звуковой сигнал снимается конденсатором C5 и через резистор R7 подается на вход звуковой карты компьютера.

Диод VD1 в схеме выполняет функцию защиты от дурака от случайной переполюсовки, поскольку конструктивные особенности разъема батареи «Крона» не исключают такой возможности. Диод лучше применить германиевый, поскольку падение напряжения на нем будет меньше. Но это совершенно не критично, его можно заменить любым маломощным кремниевым диодом, например КД521, КД522, 1N4148 и т.п.

Устройство собирается на плате из однослойнофольгированного текстолита размерами 47х26мм. Трассировка платы в программе Dip Trace будет приведена ниже. Но можно обойтись и без изготовления платы, а собрать все на универсальной монтажной плате (это та, которая с кучей дырочек) такого же размера.




Корпус устройства изготавливается из однослойного текстолита для полного экранирования усилителя.

Размеры его деталей следующие:
- боковые стенки 60х50 мм – 2 штуки
- передняя стенка 50х30 мм – 1 штука
- задняя стенка 46х30 мм – 1 штука. Размер 46 миллиметров не критичен, может варьироваться от 50 мм до 35 мм. Все зависит от того, как вы хотите устанавливать батарею питания.
- нижняя и промежуточная стенки 55х30 мм

Стенки корпуса спаиваются между собой припоем. Фольга на всех стенках должна оказаться внутри корпуса. Старайтесь не перегревать текстолит, поскольку фольга может легко отслоиться.

Первым делом спаиваются между собой все стенки, кроме задней. Затем просверливаются отверстия для разъема джэка диаметром 10 мм, отверстие для проводов питания, где-то 3 мм в диаметре и такое же в задней стенке для экранированного провода с миниджэком.

Также в месте крепления задней стенки припаивается скоба из толстой медной проволоки, в которую будет вставляться низ задней стенки.

После этого нужно будет приклеить разъем для «Кроны». Кстати, его можно взять из уже отработавшей кроны, как я всегда и делаю. Клеится этот разъем термоклеем к задней стороне передней стенки. Важно чтобы ни один из контактов разъема не касался фольги корпуса.




После этого к схеме подпаиваются провода питания и третий провод, связывающий фольгу корпуса и «землю» схемы. Также припаивается экранированный выходной провод, схема устанавливается в корпус и задняя стенка запаивается вверху по бокам.






Ниже приведены принципиальные схемы и статьи по тематике "УНЧ на полевых транзисторах" на сайте по радиоэлектронике и радиохобби сайт .

Что такое "УНЧ на полевых транзисторах" и где это применяется, принципиальные схемы самодельных устройств которые касаются термина "УНЧ на полевых транзисторах".

Приведена электронная принципиальная схема несложного высококачественного усилителя мощности ЗЧ на 20 Ватт, выполнена полностью на транзисторах, на выходе - полевые транзисторы КП904. Схема простого и мощного усилителя низкой частоты с выходным каскадом на полевых транзисторах КП912. Максимальная выходная мощность - 65 Ватт. Приведена принципиальная схема широкополосного усилителя мощности ЗЧ (УМЗЧ), выполненного по симметричной схеме на полевых транзисторах КП904. В радиолюбительской практике широкое распространение получил усилитель мощности ЗЧ (УМЗЧ), выполненный по симметричной схеме. Комплементарные биполярные транзисторы его входного каскада включены по схеме двухтактного дифференциального усилителя, а следующего за ним - по схеме... Принципиальная схема усилителя мощности с МДП -транзисторами в выходном каскаде, мощность порядка 12Вт. Схема приведена на следующем рисунке. Его основные технические характеристики... В усилителе мощности звуковой частоты класса АВ, описанном в этой статье, применяются в выходном каскаде пара комплементарных полевых МОП транзисторов. Эта особенность позволяет улучшить рабочие характеристики по сравнению с эквивалентным выходным каскадом на биполярных... Построение усилителей мощности звуковой частоты (УМЗЧ) на полевых транзисторах привлекает разработчиков возможностью достижения «ламповой» мягкости звучания (вольтамперные характеристики полевых транзисторов очень похожи на аналогичные характеристики вукуумных ламп)... Карел Бартон построил свой High-End УМЗЧ на полевых транзисторах с гексагональной структурой (HEXFET фирмы International Rectifier). Входные каскады выполнены на дискретных биполярных транзисторах с использованием симметричной дифференциально-каскодной схемотехники... «Полевой» УМЗЧ Эндре Пирета заметно прост, но также соответствует нормам высококачественного звуковоспроизведения. Оригинально (без привычных дифференциальных усилителей) решен входной каскад — это двухтактный комплементарный каскад... Мощный УМЗЧ с работой всех каскадов в режиме класса А, обеспечивающий на 8-омной нагрузке 32 Вт при потрясающе высоком реальном КПД 45% Ричард Барфут обращает внимание, что в обычном резистивном усилительном каскаде с ОЭ и разделительным конденсатором теоретически... Схема УМЗЧ, разработанного Мэттом Такером. Первый дифференциальный каскад выполнен на биполярных транзисторах Q1Q5 по типовой схеме с токовым зеркалом Q7Q8 в нагрузке, а каскад усиления напряжения — на Q9Q13 с ОЭ и нагрузкой на генератор тока Q6Q2 ... Схема электрическая принципиальная усилителя приведена на рисунке (в скобках приведены замененные элементы). Данная конструкция является модернизациейразработки . Принципиальная схема УМЗЧ на MOSFET транзисторах (200Вт). Все основные части усилителя - трансформатор, радиаторы... Несколько принципиальных схем высококачественных УМЗЧ на полевых транзисторах, привлекающие своей простотой и техническими характеристиками. Применение полевых транзисторов в усилителе мощности позволяет значительно повысить качество звучания при общем упрощении схемы...

Старое, но золотое

Старое, но золотое

Схемотехника усилителей уже прошла в своем развитии виток спирали и сейчас мы наблюдаем "ламповый ренессанс". В соответствии с законами диалектики, которые нам так упорно вдалбливали, следом должен наступить "ренессанс транзисторный". Сам факт этого неизбежен, ибо лампы, при всей своей красоте, уж очень неудобны. Даже дома. Но у транзисторных усилителей накопились свои недостатки...
Причину "транзисторного" звучания объяснили еще в середине 70-х - глубокая обратная связь. Она порождает сразу две проблемы. Первая - переходные интермодуляционные искажения (TIM-искажения) в самом усилителе, вызванные запаздыванием сигнала в петле обратной связи. С этим бороться можно только одним путем - увеличением быстродействия и усиления исходного усилителя (без обратной связи), что чревато серьезным усложнением схемы. Результат трудно прогнозируется: то ли будет, то ли нет.
Вторая проблема - глубокая обратная связь сильно снижает выходное сопротивление усилителя. А это для большинства громкоговорителей чревато возникновением тех самых интермодуляционных искажений прямо в динамических головках. Причина - при перемещении катушки в зазоре магнитной системы значительно изменяется ее индуктивность, поэтому импеданс головки тоже изменяется. При низком выходном сопротивлении усилителя это приводит к дополнительным изменениям тока через катушку, что и порождает неприятные призвуки, ошибочно принимаемые за искажения усилителя. Этим же можно объяснить парадоксальный факт, что при произвольном выборе динамиков и усилителей один комплект "звучит", а другой - "не звучит".

секрет лампового звука =
высокое выходное сопротивление усилителя
+ неглубокая обратная связь
.
Однако аналогичных результатов можно добиться и с транзисторными усилителями. Все приводимые ниже схемы объединяет одно - нетрадиционная и позабытая нынче "несимметричная" и "неправильная" схемотехника. Однако так ли она плоха, как ее представляют? Например, фазоинвертор с трансформатором - настоящий Hi-End! (рис.1) А фазоинвертор с разделенной нагрузкой (рис.2) заимствован из ламповой схемотехники...
рис.1


рис.2


рис.3

Эти схемы сейчас незаслуженно забыты. А зря. На их основе, используя современную элементную базу, можно создать простые усилители с весьма высоким качеством звучания. Во всяком случае, то, что мне доводилось собирать и слушать, звучало достойно - мягко и "вкусно". Глубина обратных связей во всех схемах невелика, есть местные ООС, а выходное сопротивление значительно. Нет и общей ООС по постоянному току.

Однако приведенные схемы работают в классе B , поэтому им присущи "переключательные" искажения. Для их устранения необходима работа выходного каскада в "чистом" классе A . И такая схема тоже появилась. Автор схемы - J.L.Linsley Hood. Первые упоминания в отечественных источниках относятся ко второй половине 70-х годов.


рис.4

Основной недостаток усилителей класса A , ограничивающий область их применения - большой ток покоя. Однако для устранения переключательных искажений есть и другой путь - использование германиевых транзисторов. Их достоинство - малые искажения в режиме B . (Когда-нибудь я напишу сагу, посвященную германию.) Другой вопрос, что найти сейчас эти транзисторы непросто, да и выбор ограничен. При повторении следующих конструкций нужно помнить, что термостойкость германиевых транзисторов невысока, поэтому не нужно экономить на радиаторах для выходного каскада.


рис.5
На этой схеме - интересный симбиоз германиевых транзиcторов с полевым. Качество звучания, несмотря на более чем скромные характеристики, очень хорошее. Чтобы освежить впечатления четвертьвековой давности, я не поленился собрать конструкцию на макете, слегка модернизировав ее под современные номиналы деталей. Транзистор МП37 можно заменить кремниевым КТ315, поскольку при налаживании все равно придется подбирать сопротивление резистора R1. При работе с нагрузкой 8 Ом мощность возрастет примерно до 3,5 Вт, емкость конденсатора C3 придется увеличить до 1000 мкФ. А для работы с нагрузкой 4 Ом придется снизить напряжение питания до 15 вольт, чтобы не превысить максимальную мощность рассеяния транзисторов выходного каскада. Поскольку общая ООС по постоянному току отсутствует, термостабильность достаточна только для работы в домашних условиях.
Две следующие схемы имеют интересную особенность. Транзисторы выходного каскада по переменному току включены по схеме с общим эмиттером, поэтому требуют небольшого напряжения возбуждения. Не требуется и традиционная вольтодобавка. Однако для постоянного тока они включены по схеме с общим коллектором, поэтому для питания выходного каскада использован "плавающий" источник питания, не связанный с "землей". Поэтому для выходного каскада каждого канала необходимо использовать отдельный источник питания. В случае применения импульсных преобразователей напряжения это не проблема. Источник питания предварительных каскадов может быть общим. Цепи ООС по постоянному и переменному току разделены, что в сочетании с цепью стабилизации тока покоя гарантирует высокую термостабильность при малой глубине ООС по переменному току. Для СЧ/ВЧ каналов - прекрасная схема.

рис.6


рис.7 Автор: А.И.Шихатов (составление и комментарии) 1999-2000
Опубликовано: сборник "Конструкции и схемы для прочтения с паяльником" М. Солон-Р, 2001, с.19-26.
  • Схемы 1,2,3,5 были опубликованы в журнале "Радио".
  • Схема 4 позаимствована из сборника
    В.А.Васильев "Зарубежные радиолюбительские конструкции" М.Радио и связь,1982, с.14...16
  • Схемы 6 и 7 позаимствованы из сборника
    Й. Боздех "Конструирование дополнительных устройств к магнитофонам" (пер. с чешск.) М.Энергоиздат 1981, с.148,175
  • Подробно о механизме возникновения интермодуляционных искажений: Должен ли УМЗЧ иметь малое выходное сопротивление?
Оглавление

УМЗЧ на полевых транзисторах

УМЗЧ на полевых транзисторах

Применение полевых транзисторов в усилителе мощности позволяет значительно повысить качество звучания при общем упрощении схемы. Передаточная характеристика полевых транзисторов близка к линейной или квадратичной, поэтому в спектре выходного сигнала практически отсутствуют четные гармоники, кроме того, происходит быстрый спад амплитуды высших гармоник (как в ламповых усилителях). Это позволяет применять в усилителях на полевых транзисторах неглубокую отрицательную обратную связь или вовсе отказаться от нее. После завоевания просторов "домашнего" Hi-Fi полевые транзисторы начали наступление на автозвук. Публикуемые схемы изначально предназначались для домашних систем, но может, кто-то рискнет применить заложенные в них идеи в автомобиле...


рис.1
Эта схема уже считается классической. В ней выходной каскад, работающий в режиме AB, выполнен на МДП-транзисторах, а предварительные каскады - на биполярных. Усилитель обеспечивает достаточно высокие показатели, но для дальнейшего улучшения качества звучания биполярные транзисторы следует полностью исключить из схемы (следующая картинка).


рис.2
После того, как исчерпаны все резервы повышения качества звучания, остается только одно - однотактный выходной каскад в "чистом" классе А. Ток, потребляемый предварительными каскадами от источника более высокого напряжения и в этой, и предыдущей схеме - минимален.


рис.3
Выходной каскад с трансформатором - полный аналог ламповых схем. Это на закуску... Интегральный источник тока CR039 задает режим работы выходного каскада.


рис.4
Однако широкополосный выходной трансформатор - достаточно сложный в изготовлении узел. Изящное решение - источник тока в цепи стока - предложено фирмой