Урок-исследование "полупроводниковые приборы". Полупроводниковые приборы Презентация по физике полупроводники и полупроводниковые приборы

Представлена презентация, которую можно использовать на уроках физики, а также на занятиях по электротехнике и основам электроники в средних профессиональных образовательных учреждениях. В работе изложена тема “полупроводниковые приборы”.

Полупроводниковыми или электропреобразовательными называются приборы, действие которых основано на использовании свойств полупроводников.

K полупроводникам относятся элементы четвертой группы таблицы Менделеева, имеющих кристаллическую структуру. Наиболее распространенными являются германий, кремний, селен.

K полупроводникам также относятся окислы металлов - оксиды, соединения с серой - сульфиды, соединения с селеном – селениды.

Виды полупроводников и их проводимостей. Собственный полупроводник - это беспримесный полупроводник.

Процесс возникновения свободных электронов и дырок называется генерацией носителей заряда.

B полупроводнике возможен процесс, обратный процессу генерации - рекомбинация. При рекомбинации происходит уничтожение пары зарядов электрон-дыркаКонцентрация носителей заряда, а следовательно, и электропроводность в полупроводнике возрастает с увеличением температуры. При температуре концентрация носителей заряда для чистого Ge равна 10 13 см -3 , для Si – 10 11 см -3 .

Этот полупроводник обладает собственной проводимостью, которая складывается из электронов и дырок в равных количествах

3 слайд:

Виды полупроводников и их проводимостей

Электронный полупроводник

Проводимость такого типа называется электронной или n-типа (от negative - отрицательный).

Примесь, дающая избыток электронов называется донорной (дающей электроны - основные носители зарядов, а дырки - неосновные.

Дырочный полупроводник

Дырочным (p-типа) называется примесный полупроводник, валентность атомов примеси которого меньше валентности атомов чистого полупроводника. Например, германий с примесью индия. Проводимость такого полупроводника будет определяться дырками и называется дырочной или р -типа (от positive – положительный).

Примесь, дающая избыток дырок, называется акцепторной (принимающей).

Дырки - основные носители зарядов, а электроны - неосновные.

5 слайд:

Полупроводниковые диоды

1. Случай отсутствия напряжения.

Область, в которой образуется двойной электрический слой и электрическое поле называется электронно-дырочным n-p - переходом.

Основные носители заряда, перемещаясь через n-p – переход, создают ток диффузии. Движение неосновных носителей заряда создает ток проводимости.

B состоянии равновесия эти токи равны по величине и противоположны по направлению. Тогда результирующий ток через переход равен нулю.

2. Случай прямого напряжения.

Такой полярности напряжение называется прямым.

При прямом напряжении внешнее поле ослабляет поле n-p – перехода.

Переход основных носителей заряда будет преобладать над переходом неосновных носителей заряда. Через переход пойдет прямой ток. Этот ток велик, т.к. определяется основными носителями заряда.

3. Случай обратного напряжения.

Через n-p – переход переходят только неосновные носители заряда: дырки из n – полупроводника и электроны из р – полупроводника. Они и создают во внешней цепи ток, противоположный прямому току – обратный ток. Он примерно в тысячу раз меньше прямого тока, т.к. определяется неосновными носителями зарядов.

8 слайд:

Вольтамперная характеристика диода

При увеличении обратного напряжения потоки основных носителей заряда уменьшаются, обратный ток увеличивается.

Дальнейшее увеличение U обр увеличивает ток незначительно, т.к. он определяется потоками неосновных носителей заряда.

Основное свойство диодов: т.к. диоды хорошо проводят ток в прямом направлении и плохо в обратном, то они обладают свойством односторонней проводимости, являются электрическими вентилями и используются в схемах выпрямителей переменного тока.

9 слайд:

Типы диодов

Устройство плоскостного диода

Устройство точечного диода

Обозначение полупроводниковых диодов на схемах.

10 слайд:

Опорные кремниевые диоды

Этот диод устроен так, что повышение обратного напряжения (приложенного к n-p – переходу) выше некоторого предела приводит к пробою диода - быстрому возрастанию обратного тока I обр при постоянном значении обратного напряжения U обр.

Если ток через диод превысит I maх, то это приведет его к перегреву и разрушению. Рабочим участком характеристики является участок отI min доI maх , который используется для стабилизации напряжения. Опорные диоды используются для стабилизации напряжения и создают опорное (эталонное) напряжение. Поэтому они называются кремниевыми стабилитронами.

При использовании полупроводниковых приборов в электронных устройствах для унификации их обозначения и стандартизации параметров используются системы условных обозначений. Эта система классифицирует полупроводниковые приборы по их назначению, основным физическим и электрическим параметрам, конструктивно-технологическим свойствам, виду полупроводниковых материалов. Система условных обозначений отечественных полупроводниковых приборов базируется на государственных и отраслевых стандартах. Первый ГОСТ на систему обозначений полупроводниковых приборов ГОСТ 10862-64 был введен в 1964 году. Затем по мере возникновения новых классификационных групп приборов был изменен на ГОСТ 10862-72, а затем на отраслевой стандарт ОСТ 11.336.038-77 и ОСТ 11.336.919-81 соответственно в 1972, 1977, 1981 годах. При этой модификации основные элементы цифробуквенного кода системы условных обозначений сохранились. Эта система обозначений логически строена и позволяет наращивать по мере дальнейшего развития элементной базы. Основные термины, определения и буквенные обозначения основных и справочных параметров полупроводниковых приборов приведены в следующих гостах: 25529-82 – Диоды полупроводниковые. Термины, определения и буквенные обозначения параметров; 19095-73 – Транзисторы полевые. Термины, определения и буквенные обозначения параметров; 20003-74 – Транзисторы биполярные. Термины, определения и буквенные обозначения параметров; 20332-84 – Тиристоры. Термины, определения и буквенные обозначения параметров.

Бесконтактные датчики температуры (пирометры)

применяются там, где затруднен доступ к измеряемым деталям, а также необходима мобильность и малая инерционность измерений. Кроме того, бесконтактные датчики температуры незаменимы там, где необходимо измерять высокие температуры – от 1500 до 3000 С.

Инфракрасное излучение с длиной волны 3 – 14 мкм от измеряемого объекта попадает на чувствительный элемент бесконтактного датчика температуры и преобразуется в электрический сигнал, который затем усиливается, нормируется, а в новых моделях датчиков и оцифровывается для передачи по сети.

Основные области применения высокотемпепературных пирометров С-700.1 СТАНДАРТ:

Металлургия: Измерение температуры расплавов черных металлов, деталей при термической и механической обработке.

Стекольная промышленность: Наладка стеклоформовочных машин, контроль температурных режимов стекловарочных печей.

Cтроительная индустрия: Контроль температуры техпроцесса изготовления строительных материалов (цемент, кирпич, строительные смеси и т.д.).

ТЕПЛОВИЗОРЫ

термопары

Термопары представляют собой две проволоки из различных металлов, сваренных между собой на одном из концов.

Термоэлектрический эффект открыл немецкий физик Зеебек в первой половине 19-го века. Если соединить два проводника из разнородных металлов таким образом, что бы они образовывали замкнутую цепь и поддерживать места контактов проводников при разной температуре, то в цепи потечет постоянный ток. Экспериментальным путем были подобраны пары металлов, которые в наибольшей степени подходят для измерения температуры, обладая высокой чувствительностью, временной стабильностью, устойчивостью к воздействию внешней среды. Это например пары металлов хромель-аллюмель, медь-константан, железо-константан, платина-платина/родий, рений-вольфрам. Каждый тип подходит для решения своих задач. Термопары хромель-алюмель (тип К) имеют высокую чувствительность и стабильность и работают до температур вплоть до 1300 С в окислительной или нейтральной атмосфере. Это один из самых распространенных типов термопар. Термопара железо-константан (тип J) работает в вакууме, восстановительной или инертной атмосфере при температурах до 500 С. При высоких температурах до 1500 С используют термопары платина- платина/родий (тип S или R) в керамических защитных кожухах. Они прекрасно измеряют температуру в окислительной, нейтральной среде и вакууме.

Термометры сопротивления

это резисторы, изготовленные из платины, меди или никеля. Это могут быть проволочные резисторы, либо металлический слой может быть напыленным на изолирующую подложку, обычно керамическую или стеклянную. Платина чаще всего применяется в термометрах сопротивления из-за ее высокой стабильности и линейности изменения сопротивления с температурой. Медь используется в основном для измерения низких температур, а никель в недорогих датчиках для измерения в диапазоне комнатных температур. Для защиты от внешней среды платиновые термометры сопротивления помещают в защитные металлические чехлы и изолируют керамическими материалами, такими как оксид алюминия или оксид магния. Такая изоляция снижает так же воздействие вибрации и ударов на датчик. Однако вместе с дополнительной изоляцией растет и время отклика датчика на резкие температурные изменения. Платиновые термометры сопротивления одни из самых точных датчиков температуры. Кроме того, они стандартизированы, что значительно упрощает их использование. Стандартно производятся датчики сопротивлением 100 и 1000 Ом. Изменение сопротивления таких датчиков с температурой дается в любых тематических справочниках в виде таблиц или формул. Диапазон измерений платиновых термометров сопротивления составляет -180 С +600 С. Несмотря на изоляцию, стоит оберегать термометры сопротивления от сильных ударов и вибрации.

Термисторы.

В этом классе датчиков используется эффект изменения электрического сопротивления материала под воздействием температуры. Обычно в качестве термисторов используют полупроводниковые материалы, как правило, оксиды различных металлов. В результате получаются датчики с высокой чувствительностью. Однако большая нелинейность позволяет использовать термисторы лишь в узком диапазоне температур. Термисторы имеют невысокую стоимость и могут изготавливаться в миниатюрных корпусах, позволяя увеличить тем самым быстродействие. Существует два типа термисторов, использующих положительный температурный коэффициент – когда электрическое сопротивление растет с повышением температуры и использующих отрицательный температурный коэффициент – здесь электрическое сопротивление падает при повышении температуры. Термисторы не имеют определенной температурной характеристики. Она зависит от конкретной модели прибора и области его применения. Основными достоинствами термисторов является их высокая чувствительность, малые размеры и вес, позволяющие создавать датчики с малым временем отклика, что важно, например, для измерения температуры воздуха. Безусловно, невысокая стоимость так же является их достоинством, позволяя встраивать датчики температуры в различные приборы. К недостаткам можно отнести высокую нелинейность термисторов, позволяющую их использовать в узком температурном диапазоне. Использование термисторов так же ограничено в диапазоне низких температур. Большое количество моделей с различными характеристиками и отсутствие единого стандарта, заставляет производителей оборудования использовать термисторы только одной конкретной модели без возможности замены.

Полупроводниковые датчики температуры используют зависимость сопротивления полупроводникового кремния от температуры. Диапазон измеряемых температур для таких датчиков составляет от -50 С до +150 С. Внутри этого диапазона кремниевые датчики температуры показывают хорошую линейность и точность. Возможность производства в одном корпусе такого датчика не только самого чувствительного элемента, но так же и схем усиления и обработки сигнала, обеспечивает датчику хорошую точность и линейность внутри температурного диапазона. Встроенная в такой датчик энергонезависимая память позволит индивидуально откалибровать каждый прибор. Большим плюсом можно назвать большое разнообразие типов выходного интерфейса: это может быть напряжение, ток, сопротивление, либо цифровой выход, позволяющий подключить такой датчик к сети передачи данных. Из слабых мест кремниевых датчиков температуры можно отметить узкий температурный диапазон и относительно большие размерами по сравнению с аналогичными датчиками других типов, особенно термопарами. Кремниевые датчики температуры применяются в основном для измерения температуры поверхности, температуры воздуха, особенно внутри различных электронных приборов.


Интегральные датчики температуры на БТ 2 Большинство полупроводниковых датчиков температуры используют соотношение между напряжением база-эмиттер и током коллектора. Базовая схема измерения температуры Схемы ячеек датчиков температуры Ячейка Брокау Ячейка токового датчика температуры


Интегральные датчики температуры на БТ 3 Датчики температуры с токовым выходом TO-92Корпус от -25 до 105T A,°C 0,298I CC,мА от 4 до 30V CC,В Различные схемы включения токовых ДТ для определения: а среднего значения температуры в трех точках пространства, б точки с минимальной температурой из трех контролируемых, в разности температур в двух точках


Интегральные датчики температуры на БТ 4 Датчики температуры с выходом по напряжению Vcc, В2, Чувствительность, мВ/ С 10 Рабочий диапазон температур, С AD AD Vcc, В Чувствительность, мВ/ С 10 Рабочий диапазон температур, С Icc, мА0,12 LM45 LM135/235/335 Vcc, В2, Чувствительность, мВ/ К 10 Рабочий диапазон температур, С LM LM LM Простейшие схемы применения для измерения: а – минимальной из трех температур, б – среднего значения температуры для трех точек, в – разности температур Типовые схемы включения: а – без калибровки, б – с калибровкой


Интегральные датчики температуры на БТ 5 Схемы простого термостата Логометрический ДТ: а – структурная схема, б – схема преобразования температуры в код, не зависящий от напряжения питания Логометрические ДТ Системы измерения называются логометрическими, если конечный результат преобразования не зависит от температуры. Выходной сигнал логометрических датчиков зависит от напряжения питания. Vcc, В2,7...3,6 Чувствительность, мВ/ С 28 Рабочий диапазон температур, С Icc, мА0,5 КорпусSOIC-8, TO92 Удобно сопрягать датчик с 12-разрядным АЦП AD7896, который использует питающее напряжение в качестве опорного


Датчики температуры с цифровым выходом 6 Микросхемы MAX6576/MAX6577 это дешёвые, слаботочные температурные датчики с однопроводным выходом. Микросхема MAX6576 преобразует окружающую температуру в меандр с периодом пропорциональным абсолютной температуре (°K). Микросхема MAX6577 преобразует окружающую температуру в меандр с частотой пропорциональной абсолютной температуре. Микросхема MAX6576 обеспечивает точность ±3°C при +25°C, ±4.5°C при +85°C и ±5°C при +125°C. Микросхема MAX6577 обеспечивает точность ±3°C при +25°C, ±3.5°C при +85°C и ±4.5°C при +125°C. Наименование Интерфейс Точность (±°C) Диапазон питающего напряжения (В)Рабочий диапазон (°C)Корпус MAX6576 MAX6577 период - темп. частота - темп. 3 от 2.7 до 5.5 от –40 до /SOT2 3 Оба устройства отличаются однопроводным выходом, который минимизирует число выводов, необходимых для взаимодействия с микропроцессором. Диапазон периода/частоты выходного меандра может быть выбран подключением двух выводов выбора времени (TS0, TS1) к VDD (питание) или GND (общий). Микросхемы MAX6576/MAX6577 выпускаются в компактных 6-контактных SOT23 корпусах.


Датчики температуры с ШИМ 7 TMP03/TMP04 - полупроводниковая ИС, длительность прямоугольного сигнала на выходе которой прямо пропорциональна ее температуре. Встроенный преобразователь температуры вырабатывает прямопропорциональное температуре напряжение, которое сравнивается с опорным напряжением, и результат сравнения подается на цифровой модулятор. Масштабный формат кодирования выходного последовательного цифрового сигнала позволяет избежать ошибок, возникающих в других устройствах ввиду нестабильности частоты синхросигнала. Приборы имеют типовую погрешность измерения ±1.5°C в диапазоне от -25°C до +100°C и превосходную линейность характеристики преобразования. Цифровой выход TMP04 является ТТЛ/КМОП совместимым, что позволяет подключать его к большинству микроконтроллеров напрямую. Выход с открытым коллектором прибора TMP03 имеет максимальный втекающий ток 5 мА. TMP03 и TMP04 имеют рабочий диапазон напряжения питания от 4.5 до 7 В. Работая от 5 В источника питания при ненагруженном выходе приборы потребляют менее 1.3 мА. TMP03/TMP04 определены для работы в температурном диапазоне от -40°C до +100°C и выпускаются в ТО-92, SO-8 и TSSOP-8 корпусах. С пониженной точностью приборы способны измерять температуру до 150°C. Формат выходного сигнала ДТ


Датчики температуры с последовательным цифровым интерфейсом 8 Эта микросхема помимо температурного датчика на основе биполярного транзистора включает также сигма- дельта АЦП, интерфейс которого совместим с интерфейсами SPI и MICROWIRE. Тринадцатиразрядный АЦП обес­печивает разрешение °С в диапазоне температур от -55 до +150°С. Датчик допускает перевод в режим молчания с пониженным энергопотреблением (shutdown mode), при котором потребляемый ток уменьшается до 10 мкА. Датчик изготавливается в корпусе SO-8 и в миниатюрном 5-выводном micro SMD-кopпyсe. Датчики температуры AD7816/17/18 Датчики температуры DS18B20


Температурные компараторы 9 Прибор имеет выход с открытым коллектором, который переключается при достижении температурой заданного пользователем значения. ADT05 имеет гистерезис, равный приблизительно 4°С, что обеспечивает быстрый цикл включения/выключения. ADT05 разработан для работы с однополярным напряжением питания от + 2,7 до +7,0 В, что облегчает их применение как в батарейных устройствах, так и в индустриальных контрольных системах. Номинал резистора, задающего температуру срабатывания, определяется выражением: R SET = 39 МОМ°С/(T SET (°C) + 281,6°C) - 90,3 к Ом. ТМР01 – двухканальный контролер, который также вырабатывает выходное напряжение, пропорциональное абсолютной температуре (выход 5). Помимо этого он вырабатывает сигналы управления на одном или обоих выходах, когда температура оказывается за пределами заданного температурного диапазона. Верхняя и нижняя границы диапазона и гистерезис компараторов каждого из этих каналов задаются внешними сопротивлениями.