Rs 485 обеспечивает обмен данными между. Физические интерфейсы RS485 и RS422

Заставить похудеть конструкции с применением RS-485 просто, если вы понимаете, как в то же самое время сохранить хорошее качество связи. Эта статья охватывает факты, мифы и злые шутки, о которых вам следует знать для достижения этой цели.

В системах промышленной автоматизации и автоматизации зданий применяется ряд удаленных устройств сбора данных, которые передают и принимают информацию через центральный модуль, предоставляющий доступ к данным пользователям и другим процессорам. Регистраторы данных и считывающие устройства типичны для таких приложений. Почти идеальная линия передачи данных для этих целей определена стандартом RS-485, который связывает устройства сбора данных кабелем на основе витой пары.

Поскольку многие из устройств сбора и накопления данных в сетях RS-485 являются компактными автономными устройствами с батарейным питанием, для контроля за их тепловыделением и увеличения срока службы батарей необходимо принятие мер по снижению их энергопотребления. Точно так же экономия энергии важна для носимых устройств и других приложений, в которых интерфейс RS-485 используется для загрузки данных в центральный процессор.

Следующий раздел предназначен в первую очередь для тех, кто не знаком с RS-485.

RS-485: история и описание

Стандарт RS-485 был совместно разработан двумя ассоциациями производителей: Ассоциацией электронной промышленности (EIA - Electronics Industries Association) и Ассоциацией промышленности средств связи (TIA - Telecommunications Industry Associastion). EIA некогда маркировала все свои стандарты префиксом "RS" (Рекомендованный стандарт). Многие инженеры продолжают использовать это обозначение, однако EIA/TIA официально заменил "RS" на "EIA/TIA" с целью облегчить идентификацию происхождения своих стандартов. На сегодняшний день, различные расширения стандарта RS-485 охватывают широкое разнообразие приложений.

Стандарты RS-485 и RS-422 имеют много общего, и поэтому их часто путают. Таблица 1 сравнивает их. RS-485, определяющий двунаправленную полудуплексную передачу данных, является единственным стандартом EIA/TIA, допускающим множественные приемники и драйверы в шинных конфигурациях. EIA/TIA-422, с другой стороны, определяет единственный однонаправленный драйвер с множественными приемниками. Элементы RS-485 обратно совместимы и взаимозаменяемы со своими двойниками из RS-422, однако драйверы RS-422 не должны использоваться в системах на основе RS-485, поскольку они не могут отказаться от управления шиной.

Таблица 1. Стандарты RS-485 и RS-422

RS-422 RS-485
Режим работы Дифференциальный Дифференциальный
Допустимое число Tx и Rx 1 Tx, 10 Rx 32 Tx, 32 Rx
Максимальная длина кабеля 1200 м 1200 м
Максимальная скорость передачи данных 10 Мбит/с 10 Мбит/с
Минимальный выходной диапазон драйвера ± 2 В ± 1.5 В
Максимальный выходной диапазон драйвера ± 5 В ± 5 В
Максимальный ток короткого замыкания драйвера 150 мА 250 мА
Сопротивление нагрузки Tx 100 Ом 54 Ом
Чувствительность по входу Rx ± 200 мВ ± 200 мВ
Максимальное входное сопротивление Rx 4 кОм 12 кОм
Диапазон напряжений входного сигнала Rx ± 7 В от -7 В до +12 В
Уровень логической единицы Rx > 200 мВ > 200 мВ
Уровень логического нуля Rx < 200 мВ < 200 мВ

Защита от электростатических разрядов

Дифференциальная передача сигнала в системах на основе RS-485 и RS-422 обеспечивает надежную передачу данных в присутствии шумов, а дифференциальные входы их приемников кроме того могут подавлять значительные синфазные напряжения. Однако для защиты от значительно больших уровней напряжений, которые обычно ассоциируются с электростатическим разрядом (ESD), необходимо принимать дополнительные меры.

Заряженная емкость человеческого тела позволяет человеку уничтожать интегральную схему простым ее касанием. Такой контакт запросто может произойти при прокладке и подключении интерфейсного кабеля. Для защиты от таких разрушительных воздействий, интерфейсные микросхемы MAXIM включают "ESD структуры". Эти структуры защищают выходы передатчиков и входы приемников в приемопередатчиках RS-485 от уровней ESD до ±15кВ.

Чтобы гарантировать заявленную защиту от ESD, Maxim осуществляет многократное тестирование положительных и отрицательных выводов питания с шагом 200В, для проверки последовательности уровней до ±15кВ. Устройства этого класса (отвечающие спецификациям модели человеческого тела (Human Body Model) или IEC 1000-4-2) маркируются в обозначении изделия дополнительным суффиксом "E".

Допустимая нагрузка драйвера RS-485/RS-422 количественно определяется в терминах единичной нагрузки, которая, в свою очередь, определяется как входной импеданс одного стандартного приемника RS-485 (12кОм). Таким образом, стандартный драйвер RS-485 может управлять 32 единичными нагрузками (32 параллельных 12-килоомных нагрузки). Однако для некоторых приемников RS-485 входное сопротивление является более высоким - 48 кОм (1/4 единичной нагрузки) или даже 96 кОм (1/8 единичной нагрузки) - и, соответственно, к одной шине могут быть подключены сразу 128 или 256 таких приемников. Вы можете подключить любую комбинацию типов приемников, если их параллельный импеданс не превышает 32 единичных нагрузки (т.е. суммарное сопротивление не меньше 375 Ом).

Последствия высоких скоростей

Более быстрые передачи требуют более высоких скоростей нарастания напряжения на выходе драйвера, а они, в свою очередь, производят большие уровни электромагнитных помех (EMI). Некоторые приемопередатчики RS-485 сводят EMI к минимуму, ограничивая их скорости нарастания. Меньшие скорости нарастания также помогают контролировать отражения, вызванные быстрыми переходными процессами, высокими скоростями передачи данных или длинными линиями связи. Основой для минимизации отражений является использование согласующих резисторов с номиналами, соответствующими волновому сопротивлению кабеля. Для обычных кабелей RS-485 (витая пара проводов 24AWG) это означает размещение 120-омных резисторов на обоих концах линии связи.

Куда уходит вся мощность?

Очевидным источником потери мощности является ток покоя приемопередатчика (IQ), который в современных устройствах значительно снижен. В таблице 2 токи покоя малопотребляющих КМОП приемопередатчиков сравниваются с являющимся промышленным стандартом устройством 75176.

Таблица 2. Сравнение токов утечки для различных приемопередатчиков RS-485

Другая характеристика энергопотребления приемопередатчиков RS-485 проявляется при отсутствии нагрузки, разрешении выхода драйвера и присутствии периодического входного сигнала. Поскольку открытых линий в RS-485 нужно избегать всегда, драйверы "долбят" свои выходные структуры при каждом переключении выхода. Это короткое включение обоих выходных транзисторов немедленно вызывает бросок тока питания. Достаточно большой входной конденсатор сглаживает эти броски, производя действующий (RMS) ток, который растет вместе со скоростью передачи данных до своего максимального значения. Для приемопередатчиков MAX1483 этот максимум равен примерно 15 мА.

Подключение стандартного приемопередатчика RS-485 к минимальной нагрузке (еще один приемопередатчик, два согласующих и два защитных резистора) позволяет измерить зависимость тока питания от скорости передачи данных в более реальных условиях. На рисунке 2 представлена зависимость ICC от скорости передачи данных для MAX1483 при следующих условиях: стандартные резисторы на 560 Ом, 120 Ом и 560 Ом, VCC = 5В, DE = /RE\ = VCC, и кабель длиной 300 м.

Как вы можете видеть из рисунка 2, ток потребления возрастает приблизительно до 37мА даже при чрезвычайно низких скоростях передачи данных; это вызвано прежде всего добавлением согласующих резисторов и резисторов защитного смещения. Для малопотребляющих приложений, это должно продемонстрировать важность типа используемого согласования, равно как и способа достижения отказоустойчивости. Отказоустойчивость обсуждается в следующем разделе, а подробное описание согласования имеется в разделе "Злые шутки согласования".

Отказоустойчивость

При напряжениях на входах приемников RS-485 в диапазоне от -200мВ до +200мВ, выходное состояние остается неопределенным. Иными словами, если дифференциальное напряжение на стороне RS-485 в полудуплексной конфигурации равно 0В и ни один из приемопередатчиков не ведет линию (или соединение разорвано), тогда логическая единица и логический ноль на выходе равновероятны. Для обеспечения определенного состояния на выходе в таких условиях, большинство современных приемопередатчиков RS-485 требуют установки резисторов защитного смещения: резистор задания начального высокого уровня (pullup) на одну линию (A) и низкого уровня (pulldown) на другую (B), как это показано на рисунке 1. Исторически, резисторы защитного смещения в большинстве схем указывались с номиналом 560 Ом, однако для снижения энергопотерь (когда согласование производится только на одном конце линии связи) это значение можно увеличить приблизительно до 1,1 кОм. Некоторые разработчики устанавливают на обоих концах резисторы с номиналами от 1,1кОм до 2,2кОм. Здесь приходится искать компромисс между помехоустойчивостью и энергопотреблением.

Рисунок 1. Три внешних резистора формируют цепь согласования и защитного смещения для данного приемопередатчика RS-485.

Рисунок 2. Зависимость тока питания приемопередатчика MAX1483 от скорости передачи данных.

Производители приемопередатчиков RS-485 прежде исключали необходимость использования внешних смещающих резисторов, обеспечивая внутренние резисторы положительного смещения по входам приемника, однако такой подход был эффективен только для решения проблемы разомкнутых цепей. Резисторы положительного смещения, используемые в этих псевдоотказоустойчивых приемниках были слишком слабы для установления уровня на выходе приемника в согласованной шине. Другие попытки избежать использования внешних резисторов за счет изменения пороговых значений приемника на 0В и -0,5В нарушали спецификацию RS-485.

Семейство приемопередатчиков MAX3080 и MAX3471 компании Maxim решило обе эти проблемы, определив точный диапазон пороговой чувствительности от -50мВ до -200мВ, устранив, таким образом, потребность в резисторах защитного смещения, сохраняя при этом полное соответствие стандарту RS-485. Эти микросхемы гарантируют, что 0В на входе приемника вызовет высокий логический уровень на выходе. Более того, эта конструкция гарантирует известное состояние выхода приемника для условий замкнутой и разорванной линии.

Как было показано в таблице 2, приемопередатчики сильно различаются значениями их токов покоя. Таким образом первым шагом в деле сохранения энергии должен стать выбор малопотребляющего устройства, такого, как MAX3471 (2,8 мкА при отключенном драйвере, до 64 Кбит/с). Поскольку потребление энергии существенно возрастает при передаче данных, другой целью является минимизация времени работы драйверов за счет передачи коротких телеграмм (блоков данных, прим. пер.) с длительными периодами ожидания между ними. В таблице 3 представлена структура типовой телеграммы последовательной передачи.

Таблица 3. Телеграмма последовательной передачи

Система на основе RS-485, использующая приемники в одну единичную нагрузку (до 32 адресуемых устройств), может, например, иметь следующие биты: 5 битов адреса, 8 битов данных, стартовые биты (все кадры), стоповые биты (все кадры), биты четности (необязательные), и биты CRC (необязательные). Минимальная длина телеграммы для такой конфигурации - 20 битов. Для безопасных передач, вы должны послать дополнительную информацию, такую как размер данных, адрес отправителя и направление, которая увеличит длину телеграммы до 255 байтов (2040 битов).

Подобное изменение длины телеграммы со структурой, определяемой такими стандартами, как X.25, обеспечивает надежность данных за счет увеличения времени использования шины и потребляемой мощности. Например, передача 20 битов при 200 Кбит/с потребует 100 мкс. При использовании MAX1483 для ежесекундной отправки данных на скорости 200 Кбит/с, средний ток составит

(100 мкс * 53 мА + (1 с - 100 мкс) * 20 мкА) / 1 с = 25.3 мкА

Когда приемопередатчик находится в неактивном режиме (idle mode), его драйвер должен быть отключен для минимизации потребляемой мощности. В таблице 4 демонстрируется влияние длины телеграммы на потребляемую мощность одиночного драйвера MAX1483, который работает с определенными перерывами между передачами. Использование режима отключения (shutdown mode) может еще больше снизить потребляемую мощность в системе, использующей технологию опроса через фиксированные промежутки времени или более длинные, детерминированные перерывы между передачами.

Таблица 4. Соотношение между длиной телеграммы и потребляемым током при использовании драйвера MAX1483

В дополнение к этим программным соображениям, аппаратные средства предлагают множество мест для усовершенствования в части энергопотребления. На рисунке 3 сравниваются токи, потребляемые различными трансиверами при передаче сигнала прямоугольной формы по 300-метровому кабелю с активными драйверами и приемниками. 75ALS176 и MAX1483 используют стандартную согласующую цепь 560Ом/120Ом/560Ом на обоих концах линии связи, в то время, как "истино безотказные" ("true failsafe") устройства (MAX3088 и MAX3471) имеют лишь 120-омные согласующие резисторы на обоих концах шины. При 20 Кбит/с токи потребления ранжируются от 12,2мА (MAX3471 с напряжением питания VCC = 3.3V) до 70мА (75ALS176). Таким образом, значительное сокращение потребления возникает немедленно, как только вы выбираете малопотребляющее устройство со свойством "истиной безотказности", которая, кроме того, исключает необходимость установки резисторов защитного смещения (на землю и на линию питания VCC). Убедитесь, что приемник выбранного вами приемопередатчика RS-485, выдает на выход правильные логические уровни для условий как замкнутой, так и разомкнутой цепи.

Рисунок 3. Микросхемы приемопередатчиков сильно отличаются зависимостью тока потребления от скорости передачи данных.

Злые шутки согласования

Как было отмечено выше, согласующие резисторы устраняют отражения, вызваные рассогласованием импедансов, однако их недостаток - дополнительное рассеяние мощности. Их влияние показано в таблице 5, в которой приводятся токи потребления для различных приемопередатчиков (при активном драйвере) для условий отсутствия резисторов, использования только согласующих резисторов, а также комбинации согласующих резисторов и резисторов защитного смещения.

Таблица 5. Использование согласующих резисторов и резисторов защитного смещения увеличивает потребляемый ток

MAX1483 MAX3088 MAX3471 SN75ALS176
I VCC (no RT) 60 мкА 517 мкА 74 мкА 22 мкА
I VCC (RT =120) 24 мкА 22.5 мкА 19.5 мкА 48 мкА
I VCC (RT = 560-120-560) 42 мкА N/A N/A 70 мкА

Исключение согласования

Первый способ уменьшения потребляемой мощности состоит в том, чтобы вообще устранить согласующие резисторы. Этот вариант возможен только для коротких линий связи и низких скоростей передачи данных, которые позволяют отражениям успокоиться еще до того, как данные будут обработаны приемником. Как показывает практика, согласование не нужно, если время нарастания сигнала по крайней мере в четыре раза превосходит время задержки одностороннего прохождения сигнала через кабель. Следующие шаги используют это правило для вычисления максимальной допустимой длины несогласованного кабеля:

  • Шаг 1. Для рассматриваемого кабеля найдите скорость одностороннего прохождения сигнала, обычно предоставляемую производителем кабеля как процентное отношение к скорости света в свободном пространстве (c = 3x10 8 м/с). Типовое значение для стандартного кабеля в поливинилхлоридной изоляции (состоящего их витой пары #24 AWG) составляет 203мм/нс.
  • Шаг 2 . Из спецификации приемопередатчика RS-485 найдите его минимальное время нарастания (t r min). Например, для MAX3471 оно равно 750нс.
  • Шаг 3 . Разделите это минимальное время нарастания на 4. Для MAX3471 получим t r min /4 = 750нс/4 = 187.5нс.
  • Шаг 4 . Вычислите максимальную протяженность кабеля, для которой не требуется согласование: 187.5нс (230мм/нс) = 38м.

Таким образом, MAX3471 может обеспечить приличное качество сигнала при передаче и приеме на скорости 64Кбит/с по 38-метровому кабелю без согласующих резисторов. Рисунок 4 демонстрирует достигнутое драматическое снижение потребления MAX3471, когда 30 метров кабеля без согласующего резистора используются вместо 300 метров кабеля и 120 согласующих резисторов.

Рисунок 4. Согласующие резисторы - основной потребитель мощности.

RC-согласование

На первый взгляд, способность RC согласования блокировать постоянный ток является весьма многообещающей. Вы найдете, однако, что эта техника налагает определенные условия. Согласование состоит из последовательной RC цепочки, включенной параллельно дифференциальным входам приемника (A и B), как показано на рисунке 5. Несмотря на то, что R всегда равно волновому сопротивлению кабеля (Z 0), выбор C требует некоторых рассуждений. Большая величина C обеспечивает хорошее согласование, позволяя любому сигналу видеть R, которое соответствует Z0, однако большие значения также увеличивают пиковое значение выходного тока драйвера. К сожалению, более длинные кабели требуют больших значений емкости C. Целые статьи были посвящены определению номинала C для достижения этого компромисса. Вы можете найти детальные уравнения на эту тему в руководствах, ссылки на которые приведены в конце настоящей статьи.

Рисунок 5. RC согласование снижает потребление, однако требует тщательного выбора номинала C.

Среднее напряжение сигнала - другой важный фактор, который часто игнорируется. Если только среднее напряжение сигнала не сбалансировано по постоянному току, эффект зубчатого контура (stair-stepping effect) по постоянному току вызывает значительные дрожания из-за эффекта, известного как "межсимвольная интерференция." Если коротко, то RC согласование эффективно для снижения потребления, однако оно склонно к разрушению качества сигнала. Поскольку RC согласование налагает так много ограничений на свое использование, лучшая альтернатива во многих случаях - отсутствие согласования вообще.

Согласование на диодах Шотки

Диоды Шотки предлагают альтернативный метод согласования, когда большая потребляемая мощность вызывает беспокойство. В отличие от других типов согласования, диоды Шотки не пытаются соответствовать волновому сопротивлению шины. Вместо этого, они просто подавляют положительные и отрицательные выбросы на фронтах импульсов, вызванные отражением. В результате, изменения напряжения ограничены положительным пороговым напряжением и нулем.

Цепь согласования на диодах Шотки впустую рассеивает незначительную энергию, поскольку они проводят только при наличии положительных и отрицательных выбросов. С другой стороны, стандартное резистивное согласование (как с резисторами защитного смещения, так и без оных), постоянно рассеивает мощность. Рисунок 6 иллюстрирует использование диодов Шотки для борьбы с отражениями. Диоды Шотки не обеспечивают отказоустойчивую работу, однако уровни порогового напряжения, выбранные в приемопередатчиках MAX308X и MAX3471, дают возможность реализовать отказоустойчивую работу с этим типом согласования.

Рисунок 6. Несмотря на дороговизну, цепь согласования на диодах Шотки имеет много достоинств.

Диод Шотки, наилучшее доступное приближение к идеальному диоду (нулевое прямое напряжение Vf, нулевое время включения tON и нулевое время обратного восстановления trr), представляет большой интерес в качестве замены энергоемких согласующих резисторов. Недостаток такого согласования в системах на основе RS-485/RS-422 заключается в том, что диоды Шотки не могут подавлять все отражения. Как только отраженный сигнал угаснет ниже прямого напряжения диода Шотки, его энергия останется незатронутой согласующими диодами и сохранится до тех пор, пока не будет рассеяна кабелем. Существенно или нет это затяжное возмущение, зависит от величины сигнала на входах приемника.

Главный недостаток Шотки-терминатора - его стоимость. Одна точка согласования требует двух диодов. Поскольку шина RS-485/RS-422 является дифференциальной, это число снова умножается на два (Рисунок 6). Использование на шине многжественных Шотки-терминаторов не является необычным.

Терминаторы на диодах Шотки дают много преимуществ для систем на основе RS-485/RS-422, и экономия энергии - главное из них (Рисунок 7). Не нужно ничего вычислять, поскольку специфицированные ограничения для длины кабеля и скорости передачи данных будут достигнуты раньше, чем какие либо ограничения Шотки-терминатора. Другое преимущество заключается в том, что множественные Шотки-терминаторы в различных ответвлениях и на входах приемников улучшают качество сигнала без загрузки коммуникационной шины.

Рисунок 7. Потребляемый ток в системах RS-485 сильно зависит от скорости передачи данных и типа согласования.

Подведение итогов

Когда скорость передачи данных высока и кабель имеет большую длину, в системе RS-485 трудно обеспечить сверхмалое потребление (в оригинале "flea power" - "мощность блохи", - Прим. пер.), поскольку возникает необходимость устанавливать на линии связи согласующие устройства (терминаторы). В этом случае приемопередатчики с функцией "истиной помехоустойчивости" на выходах приемников могут экономить энергию даже при использовании терминаторов, устраняя потребность в резисторах защитного смещения. Программная организация связи также позволяет снизить потребляемую мощность, переводя приемопередатчик в отключенное состояние или запрещая драйвер, когда он не используется.

Для более низких скоростей и более коротких кабелей разница в энергопотреблении огромна: Передача данных со скоростью 60 Кбит/с по 30-метровому кабелю при использовании стандартного приемопередатчика SN75ALS176 со 120-омными согласующими резисторами потребует от системы электропитания ток 70мА. С другой стороны, использование MAX3471 при тех же самых условиях потребует только 2,5мА от источника питания.

Интерфейсы RS-485 и RS-422 описаны в стандартах ANSI EIA/TIA -485-А и EIA/TIA-422. Интерфейс RS-485 является наиболее распространенным в промышленной автоматизации. Его используют промышленные сети Modbus , Profibus DP, ARCNET, BitBus, WorldFip, LON, Interbus и множество нестандартных сетей. Связано это с тем, что по всем основным показателям данный интерфейс является наилучшим из всех возможных при современном уровне развития технологии. Основными его достоинствами являются:

  • двусторонний обмен данными всего по одной витой паре проводов;
  • работа с несколькими трансиверами, подключенными к одной и той же линии, т. е. возможность организации сети;
  • большая длина линии связи;
  • достаточно высокая скорость передачи.

2.3.1. Принципы построения

Дифференциальная передача сигнала

В основе построения интерфейса RS -485 лежит дифференциальный способ передачи сигнала, когда напряжение, соответствующее уровню логической единицы или нуля, отсчитывается не от "земли", а измеряется как разность потенциалов между двумя передающими линиями: Data + и Data - (рис. 2.1). При этом напряжение каждой линии относительно "земли" может быть произвольным, но не должно выходить за диапазон -7...+12 В [ - TIA ].

Приемники сигнала являются дифференциальными, т.е. воспринимают только разность между напряжениями на линии Data + и Data -. При разности напряжений более 200 мВ, до +12 В считается, что на линии установлено значение логической единицы, при напряжении менее -200 мВ, до -7 В - логического нуля. Дифференциальное напряжение на выходе передатчика в соответствии со стандартом должно быть не менее 1,5 В, поэтому при пороге срабатывания приемника 200 мВ помеха (в том числе падение напряжения на омическом сопротивлении линии) может иметь размах 1,3 В над уровнем 200 мВ. Такой большой запас необходим для работы на длинных линиях с большим омическим сопротивлением. Фактически, именно этот запас по напряжению и определяет максимальную длину линии связи (1200 м) при низких скоростях передачи (менее 100 кбит/с).

Благодаря симметрии линий относительно "земли" в них наводятся помехи, близкие по форме и величине. В приемнике с дифференциальным входом сигнал выделяется путем вычитания напряжений на линиях, поэтому после вычитания напряжение помехи оказывается равным нулю. В реальных условиях, когда существует небольшая асимметрия линий и нагрузок, помеха подавляется не полностью, но ослабляется существенно.

Для минимизации чувствительности линии передачи к электромагнитной наводке используется витая пара проводов. Токи, наводимые в соседних витках вследствие явления электромагнитной индукции, по "правилу буравчика" оказываются направленными навстречу друг-другу и взаимно компенсируются. Степень компенсации определяется качеством изготовления кабеля и количеством витков на единицу длины.

"Третье" состояние выходов

Рис. 2.1. Соединение трех устройств с интерфейсом RS -485 по двухпроводной схеме

Второй особенностью передатчика D (D - "Driver ") интерфейса RS -485 является возможность перевода выходных каскадов в "третье" (высокоомное) состояние сигналом (Driver Enable ) (рис. 2.1). Для этого запираются оба транзистора выходного каскада передатчика. Наличие третьего состояния позволяет осуществить полудуплексный обмен между любыми двумя устройствами, подключенными к линии, всего по двум проводам. Если на рис. 2.1 передачу выполняет устройство , а прием - устройство , то выходы передатчиков и переводятся в высокоомное состояние, т. е. фактически к линии оказываются подключены только приемники, при этом выходное сопротивление передатчиков и не шунтирует линию.

Перевод передатчика интерфейса в третье состояние осуществляется обычно сигналом RTS (Request To Send ) СОМ-порта.

Четырехпроводной интерфейс

Интерфейс RS -485 имеет две версии: двухпроводную и четырехпроводную . Двухпроводная используется для полудуплексной передачи (рис. 2.1), когда информация может передаваться в обоих направлениях, но в разное время. Для полнодуплексной (дуплексной ) передачи используют четыре линии связи: по двум информация передается в одном направлении, по двум другим - в обратном (рис. 2.2).

Недостатком четырехпроводной (рис. 2.2) схемы является необходимость жесткого указания ведущего и ведомых устройств на стадии проектирования системы, в то время как в двухпроводной схеме любое устройство может быть как в роли ведущего, так и ведомого. Достоинством четырехпроводной схемы является возможность одновременной передачи и приема данных, что бывает необходимо при реализации некоторых сложных протоколов обмена.

Режим приема эха

Рис. 2.2. Четырехпроводное соединение устройств с интерфейсом RS -485

Если приемник передающего узла включен во время передачи, то передающий узел принимает свои же сигналы. Этот режим называется "приемом эха" и обычно устанавливается микропереключателем на плате интерфейса. Прием эха иногда используется в сложных протоколах передачи, но чаще этот режим выключен.

Заземление, гальваническая изоляция и защита от молнии

Если порты RS -485, подключенные к линии передачи, расположены на большом расстоянии один от другого, то потенциалы их "земель" могут сильно различаться. В этом случае для исключения пробоя выходных каскадов микросхем трансиверов (приемопередатчиков) интерфейса следует использовать гальваническую изоляцию между портом RS -485 и землей. При небольшой разности потенциалов "земли" для выравнивания потенциалов, в принципе, можно использовать проводник, однако такой способ на практике не применяется, поскольку практически все коммерческие интерфейсы RS -485 имеют гальваническую изоляцию (см. например, преобразователь NL-232C или повторитель интерфейсов NL-485C фирмы RealLab!).

Защита интерфейса от молнии выполняется с помощью газоразрядных и полупроводниковых устройств защиты, см. раздел "Защита от помех" .

2.3.2. Стандартные параметры

В последнее время появилось много микросхем трансиверов интерфейса RS -485, которые имеют более широкие возможности, чем установленные стандартом. Однако для обеспечения совместимости устройств между собой необходимо знать параметры, описанные в стандарте (см. табл. 2.2).

2.3.5. Устранение состояния неопределенности линии

Когда передатчики всех устройств, подключенных к лини, находятся в третьем (высокоомном) состоянии, логическое состояние линии и входов всех приемников не определено. Чтобы устранить эту неопределенность, неинвертирующий вход приемника соединяют через резистор с шиной питания, а инвертирующий - с шиной "земли". Величины резисторов выбирают такими, чтобы напряжение между входами стало больше порога срабатывания приемника (+200 мВ).

Поскольку эти резисторы оказываются подключенными параллельно линии передачи, то для обеспечения согласования линии с интерфейсом необходимо, чтобы эквивалентное сопротивление на входе линии было равно 120 Ом.

Например, если резисторы, используемые для устранения неопределенности состояния линии, имеют сопротивление 450 Ом каждое, то резистор для согласования линии должен иметь номинал 130 Ом, тогда эквивалентное сопротивление цепи будет равно 114120 Ом. Для того, чтобы найти дифференциальное напряжение линии в третьем состоянии всех передатчиков (см. рис. 2.6), нужно учесть, что к противоположному концу линии в стандартной конфигурации подключен еще один резистор сопротивлением 120 Ом и до 32 приемников с входным дифференциальным сопротивлением 12 кОм. Тогда при напряжении питания (рис. 2.6) дифференциальное напряжение линии будет равно +272 мВ, что удовлетворяет требованию стандарта.

2.3.6. Сквозные токи

В сети на основе интерфейса RS -485 может быть ситуация, когда включены два передатчика одновременно. Если при этом один из них находится в состоянии логической единицы, а второй - в состоянии логического нуля, то от источника питания на землю течет "сквозной" ток большой величины, ограниченный только низким сопротивлением двух открытых транзисторных ключей. Этот ток может вывести из строя транзисторы выходного каскада передатчика или вызвать срабатывание их схемы защиты.

Такая ситуация возможна не только при грубых ошибках в программном обеспечении, но и в случае, если неправильно установлена задержка между моментом выключения одного передатчика и включением другого. Ведомое устройство не должно передавать данные до тех пор, пока передающее не закончит передачу. Повторители интерфейса должны определять начало и конец передачи данных и в соответствии ними переводить передатчик в активное или третье состояние.

2.3.7. Выбор кабеля

В зависимости от скорости передачи и необходимой длины кабеля можно использовать либо специально спроектированный для интерфейса RS -485 кабель, либо практически любую пару проводов. Кабель, спроектированный специально для интерфейса RS -485, является витой парой с волновым сопротивлением 120 Ом.

Для хорошего подавления излучаемых и принимаемых помех важно большое количество витков на единицу длины кабеля, а также идентичность параметров всех проводов.

При использовании неизолированных трансиверов интерфейса кроме сигнальных проводов в кабеле необходимо предусмотреть еще одну витую пару для соединения цепей заземления соединяемых интерфейсов. При наличии гальванической изоляции интерфейсов этого делать не нужно.

Кабели могут быть экранированными или нет. Без эксперимента очень трудно решить, нужен ли экран. Однако, учитывая, что стоимость экранированного кабеля не намного выше, лучше всегда использовать кабель с экраном.

При низкой скорости передачи и на постоянном токе большую роль играет падение напряжения на омическом сопротивлении кабеля. Так, стандартный кабель для интерфейса RS -485 сечением 0,35 кв.мм имеет омическое сопротивление 48,5 * 2 = 97 Ом при длине 1 км. При терминальном резисторе 120 Ом кабель будет выполнять роль делителя напряжения с коэффициентом деления 0,55, т. е. напряжение на выходе кабеля будет примерно в 2 раза меньше, чем на его входе. Этим ограничивается допустимая длина кабеля при скорости передачи менее 100 кбит/с.

На более высоких частотах допустимая длина кабеля уменьшается с ростом частоты (рис. 2.7) и ограничивается потерями в кабеле и эффектом дрожания фронта импульсов. Потери складываются из падения напряжения на омическом сопротивлении проводников, которое на высоких частотах возрастает за счет вытеснения тока к поверхности (скин-эффект) и потерь в диэлектрике. К примеру, ослабление сигнала в кабеле Belden 9501PVC составляет 10 дБ (3,2 раза) на частоте 20 МГц и 0,4 дБ (на 4,7%) на частоте 100 кГц при длине кабеля 100 м.

2.3.8. Расширение предельных возможностей

Стандарт RS -485 допускает подключение не более 32 приемников к одному передатчику. Эта величина ограничивается мощностью выходного каскада передатчика при стандартном входном сопротивлением приемника 12 кОм. Количество нагрузок (приемников) может быть увеличено с помощью более мощных передатчиков, приемников с большим входным сопротивлением и промежуточных ретрансляторов сигнала (повторителей интерфейса). Все эти методы используются на практике, когда это необходимо, хотя они выходят за рамки требований стандарта.

В некоторых случаях требуется соединить устройства на расстоянии более 1200 м или подключить к одной сети более 32 устройств. Это можно сделать с помощью повторителей (репитеров , ретрансляторов) интерфейса. Повторитель устанавливается между двумя сегментами линии передачи, принимает сигнал одного сегмента, восстанавливает фронты импульсов и передает его с помощью стандартного передатчика во второй сегмент (рис. 2.5). Такие повторители обычно являются двунаправленными и имеют гальваническую изоляцию. Примером может служить повторитель NL-485C фирмы RealLab! . Каждый повторитель позволяет добавить к линии 31 стандартное устройство и увеличить длину линии на 1200 м.

Распространенным методом увеличения числа нагрузок линии является использование приемников с более высокоомным входом, чем предусмотрено стандартом EIA/TIA-485 (12 кОм). Например, при входном сопротивлении приемника 24 кОм к стандартному передатчику можно подключить 64 приемника. Уже выпускаются микросхемы трансиверов для интерфейса RS-485 с возможностью подключения 64, 128 и 256 приемников в одном сегменте сети (www.analog.com/RS485). Отметим, что увеличение количества нагрузок путем увеличения входного сопротивления приемников приводит к уменьшению мощности передаваемого по линии сигнала, и, как следствие, к снижению помехоустойчивости.

2.3.9. Интерфейсы RS-232 и RS-422

Интерфейс RS -422 используется гораздо реже, чем RS -485 и, как правило, не для создания сети, а для соединения двух устройств на большом расстоянии (до 1200 м), поскольку интерфейс RS Рис. 2.9. Соединение двух модулей преобразователей интерфейса RS-232/RS-422Дифференциальный

Дифференциальный

Максимальное количество приемников

Максимальная длина кабеля

Максимальная скорость передачи

30 Мбит/с**

Синфазное напряжение на выходе

Напряжение в линии под нагрузкой

Импеданс нагрузки

Ток утечки в "третьем" состоянии

Допустимый диапазон сигналов на входе приемника

Чувствительность приемника

Входное сопротивление приемника

Примечание . **Скорость передачи 30 Мбит/с обеспечивается современной элементной базой, но не является стандартной.

* EIA - Electronic Industries Association - ассоциация электронной промышленности. TIA - Telecommunications Industry Association - ассоциация телекоммуникационной промышленности. Обе организации занимаются разработкой стандартов.

В условиях промышленного применения беспроводные линии передачи данных никогда не смогут полностью заменить проводные . Среди последних самым распространенным и надежным до сих пор остается последовательный интерфейс RS -485 . А производителем наиболее защищенных от внешних воздействий и разнообразных по конфигурации и степени интеграции приемопередатчиков для него, в свою очередь, остается компания Maxim Integrated .

Несмотря на рост популярности беспроводных сетей, наиболее надежную и устойчивую связь, особенно в жестких условиях эксплуатации, обеспечивают проводные. Правильно спроектированные проводные сети позволяют реализовать эффективную связь в промышленных приложениях и в системах автоматизированного управления производственными процессами, обеспечивая устойчивость к помехам, электростатическим разрядам и перенапряжениям. Отличительные особенности интерфейса RS-485 обусловили его широкое применение в индустрии.

Сравнение интерфейсов RS-485 и RS-422

Приемопередатчик RS-485 является наиболее распространенным интерфейсом физического уровня для реализации сетей с последовательной передачей данных, предназначенных для жестких условий эксплуатации в промышленных применениях и в системах автоматизированного управления зданиями. Данный стандарт последовательного интерфейса обеспечивает обмен данными с высокой скоростью на сравнительно большое расстояние по одной дифференциальной линии (витой паре). Основная проблема применения RS-485 в промышленности и в системах автоматизированного управления зданиями состоит в том, что электрические переходные процессы, возникающие при быстрой коммутации индуктивных нагрузок, электростатические разряды, а также импульсные перенапряжения, воздействуя на сети автоматизированных систем управления, способны исказить передаваемые данные или привести к выходу их из строя.

В настоящее время существует несколько типов интерфейсов передачи данных, каждый из которых разработан для конкретных применений с учетом требуемого набора параметров и структуры протокола. К числу интерфейсов последовательной передачи данных относятся CAN, RS-232, RS-485/RS-422, I 2 C, I 2 S, LIN, SPI и SMBus, однако RS-485 и RS-422 по-прежнему остаются наиболее надежными, особенно в жестких условиях эксплуатации.

Интерфейсы RS-485 и RS-422 во многом схожи, однако имеют некоторые существенные отличия, которые необходимо учитывать при проектировании систем передачи данных. В соответствии со стандартом TIA/EIA-422, интерфейс RS-422 специфицирован для промышленных применений с одним ведущим устройством шины данных, к которой может быть подключено до 10 ведомых устройств (рисунок 1). Он обеспечивает передачу на скорости до 10 Мбит/с, используя витую пару, что позволяет повысить помехоустойчивость и достичь максимально возможной дальности и скорости передачи данных. Типичные области применения RS-422 – автоматизация производственных процессов (производство химикатов, пищевое производство, бумажные фабрики), комплексная автоматизация производства (автомобильная и металлообрабатывающая промышленность), системы вентиляции и кондиционирования, системы безопасности, управление двигателями и контроль за перемещением объектов.

RS-485 обеспечивает более высокую гибкость благодаря возможности использования нескольких ведущих устройств на общей шине, а также увеличения максимального числа устройств на шине с 10 до 32. Согласно стандарту TIA/EIA-485, интерфейс RS-485 по сравнению с RS-422 имеет более широкий диапазон синфазного напряжения (-7…12 В вместо ±7В) и несколько меньший диапазон дифференциального напряжения (±1,5 В вместо ±2 В), что обеспечивает достаточный уровень сигнала приемника при максимальной нагрузке линии. Используя расширенные возможности многоточечной шины данных, можно создавать сети устройств, подключенных к одному последовательному порту RS-485. Благодаря высокой помехоустойчивости и возможности многоточечных подключений RS-485 является наилучшим среди последовательных интерфейсов для использования в промышленных распределенных системах, подключаемых к программируемому логическому контроллеру (PLC), графическому контроллеру (HMI) или другим контроллерам для сбора данных. Поскольку RS-485 является расширенным вариантом RS-422, все устройства RS-422 могут подключаться к шине, управляемой ведущим устройством RS-485. Типичные области применения для RS-485 аналогичны перечисленным выше областям применения RS-422, при этом более частое использование RS-485 объясняется его расширенными возможностями.

RS-485 – самый популярный промышленный интерфейс

Стандарт TIA/EIA-485 допускает использование RS-485 на расстоянии до 1200 м. На более коротких дистанциях скорости передачи данных – более 40 Мбит/с. Использование дифференциального сигнала обеспечивает интерфейсу RS-485 более высокую дальность, однако скорость передачи данных уменьшается по мере увеличения длины линии. На скорость передачи данных влияет также площадь сечения проводов линии и число устройств, подключенных к ней. При необходимости получения одновременно большой дальности и высокой скорости передачи данных рекомендуется использовать приемопередатчики RS-485 со встроенной функцией высокочастотной коррекции, например, MAX3291 . Интерфейс RS-485 может использоваться в полудуплексном режиме с применением одной витой пары проводов или в дуплексном режиме с одновременными передачей и приемом данных, что обеспечивается использованием двух витых пар (четыре провода). В многоточечной конфигурации в полудуплексном режиме RS-485 способен поддерживать до 32 передатчиков и до 32 приемников. Однако микросхемы приемопередатчиков нового поколения имеют более высокий входной импеданс, что позволяет снизить нагрузку приемника на линию от 1/4 до 1/8 стандартного значения. Например, при использовании приемопередатчика MAX13448E число приемников, подключаемых к шине RS-485, может быть увеличено до 256. Благодаря расширенному многоточечному интерфейсу RS-485 имеется возможность построения сетей различных устройств, подключенных к одному последовательному порту, как показано на рисунке 2.

Чувствительность приемника составляет ±200 мВ. Следовательно, для распознавания одного бита данных уровни сигнала в точке подключения приемника должны быть больше +200 мВ для нуля и меньше -200 мВ для единицы (рисунок 3). При этом приемник будет подавлять помехи, уровень которых находится в диапазоне ±200 мВ. Дифференциальная линия обеспечивает также эффективное подавление синфазных помех. Минимальное входное сопротивление приемника составляет 12 кОм, выходное напряжение передатчика находится в диапазоне ± 1,5…± 5 В.

Проблемы, связанные с использованием последовательного интерфейса в промышленной среде

Разработчики промышленных систем сталкиваются со сложными задачами по обеспечению их надежной эксплуатации в электромагнитной обстановке, способной вывести из строя оборудование или нарушить работу цифровых систем передачи данных. Одним из примеров подобных систем является автоматическое управление технологическим оборудованием на автоматизированном промышленном предприятии. Контроллер, управляющий процессом, измеряет его параметры, а также параметры окружающей среды, и передает команды исполнительным устройствам либо формирует аварийные оповещения. Промышленные контроллеры представляют собой, как правило, микропроцессорные устройства, архитектура которых оптимизирована для решения задач данного промышленного предприятия. Линии передачи данных топологии «точка-точка» в таких системах подвержены сильным электромагнитным помехам от воздействия окружающей среды.

Преобразователи постоянного напряжения, используемые в промышленном производстве, работают с высокими входными напряжениями и обеспечивают изолированные от входа напряжения для питания нагрузки. Для питания устройств распределенной системы, не имеющих собственного сетевого источника питания, используются напряжения 24 или 48 В DC. Питание оконечной нагрузки осуществляется напряжением 12 или 5 В, полученным путем преобразования входного напряжения. Системам, обеспечивающим связь с удаленными датчиками или исполнительными устройствами, требуется защита от переходных процессов, электромагнитных помех и разности потенциалов земли.

Многие компании, такие как Maxim Integrated, прилагают большие усилия, чтобы интегральные микросхемы для промышленных применений отличались высокой надежностью и устойчивостью к неблагоприятной электромагнитной обстановке. Приемопередатчики RS-485 производства компании Maxim содержат встроенные цепи защиты от высоковольтных электростатических разрядов и импульсных перенапряжений и обладают возможностью «горячей» замены без потери данных в линии.

Защита систем передачи данных от неблагоприятных внешних воздействий

Усиленная защита от ЭСР

Электростатический разряд (ЭСР) возникает при соприкосновении двух противоположно заряженных материалов, вследствие чего происходит перенос статических зарядов и формируется искровой разряд. ЭСР часто возникает при контакте людей с окружающими предметами. Искровые разряды, возникающие при небрежном обращении с полупроводниковыми приборами, могут существенно ухудшить их характеристики или привести к полному разрушению полупроводниковой структуры. ЭСР может возникнуть, например, при замене кабеля или простом прикосновении к порту ввода-вывода и привести к отключению порта вследствие выхода из строя одной или нескольких микросхем интерфейса (рисунок 4).

Подобные аварии могут приводить к значительным убыткам, так как повышают стоимость гарантийного ремонта и воспринимаются потребителями как следствие низкого качества продукта. В промышленном производстве ЭСР представляет собой серьезную проблему, способную причинить убытки в миллиарды долларов ежегодно. В реальных условиях эксплуатации ЭСР может привести к отказу отдельных компонентов, а иногда и системы в целом. Для защиты интерфейсов передачи данных могут использоваться внешние диоды, однако некоторые интерфейсные микросхемы содержат встроенные компоненты защиты от ЭСР и не требуют дополнительных внешних цепей защиты. На рисунке 5 показана упрощенная функциональная схема типовой встроенной цепи защиты от ЭСР. Импульсные помехи в сигнальной линии ограничиваются диодной схемой защиты на уровнях напряжения питания V CC и земли и, таким образом, защищают внутреннюю часть схемы от повреждений. Производимые в настоящее время микросхемы интерфейсов и аналоговые коммутаторы со встроенной защитой от ЭСР в основном соответствуют стандарту МЭК (IEC) 61000-4-2.

Компания Maxim Integrated инвестировала значительные средства в разработку микросхем с надежной встроенной защитой от ЭСР и в настоящее время занимает лидирующие позиции в производстве приемопередатчиков интерфейсов от RS-232 до RS-485. Данные устройства выдерживают воздействие испытательных импульсов ЭСР, соответствующих МЭК (IEC) 61000-4-2 и JEDEC JS-001, непосредственно на порты ввода-вывода. Решения компании Maxim в области защиты от ЭСР отличаются надежностью, доступностью, отсутствием дополнительных внешних компонентов и меньшей стоимостью по сравнению с большинством аналогов. Все микросхемы интерфейсов производства этой компании содержат встроенные элементы, обеспечивающие защиту каждого вывода от ЭСР, возникающих в процессе производства и эксплуатации. Приемопередатчики семейства MAX3483AE /MAX3485AE обеспечивают защиту выходов передатчиков и входов приемников от воздействия высоковольтных импульсов амплитудой до ±20 кВ. При этом сохраняется нормальный режим работы изделий, не требуется выключения и повторного включения питания. Кроме того, встроенные элементы защиты от ЭСР обеспечивают функционирование при включении и выключении питания, а также в дежурном режиме с низким энергопотреблением.

Защита от перенапряжений

В промышленных применениях входы и выходы драйверов RS-485 подвержены сбоям, возникающим в результате импульсных перенапряжений. Параметры импульсных перенапряжений отличаются от ЭСР – в то время как длительность ЭСР обычно находится в диапазоне до 100 нс, длительность импульсных перенапряжений может составлять 200 мкс и более. Причинами возникновения перенапряжений могут быть ошибки проводного монтажа, плохие контакты, поврежденные или неисправные кабели, а также капли припоя, которые могут образовывать токопроводящее соединение между силовыми и сигнальными линиями на печатной плате или в разъеме. Поскольку в промышленных системах электропитания используются напряжения, превышающие 24 В, воздействие таких напряжений на стандартные приемопередатчики RS-485, не имеющие защиты от перенапряжений, приведет к их выходу из строя в течение нескольких минут или даже секунд. Для защиты от импульсных перенапряжений обычные микросхемы интерфейса RS-485 требуют дорогостоящих внешних устройств, выполненных на дискретных компонентах. Приемопередатчики RS-485 со встроенной защитой от перенапряжений способны выдерживать синфазные помехи в линии передачи данных до ±40, ±60 и ±80 В. Компания Maxim производит линейку приемопередатчиков RS-485/RS-422 MAX13442E …MAX13444E , устойчивых к постоянным напряжениям на входах и выходах до ±80 В относительно земли. Элементы защиты функционируют независимо от текущего состояния микросхемы, – включена ли она, выключена или находится в дежурном режиме, – что позволяет характеризовать данные приемопередатчики как наиболее надежные в отрасли, идеально подходящие для промышленных применений. Приемопередатчики производства компании Maxim сохраняют работоспособность при перенапряжениях, обусловленных замыканием силовых и сигнальных линий, ошибками проводного монтажа, неправильным подключением разъемов, дефектами кабелей и неправильной эксплуатацией.

Устойчивость приемников к неопределенным состояниям линии

Важной характеристикой микросхем интерфейса RS-485 является невосприимчивость приемников к неопределенным состояниям линии, что гарантирует установку высокого логического уровня на выходе приемника при разомкнутых или замкнутых входах, а также при переходе всех передатчиков, подключенных к линии, в неактивный режим (высокоимпедансное состояние выходов). Проблема корректного восприятия приемником сигналов замкнутой линии данных решается путем смещения порогов входного сигнала до отрицательных напряжений -50 и -200 мВ. Если входное дифференциальное напряжение приемника V A – V B больше или равно -50 мВ – на выходе R 0 устанавливается высокий уровень. Если V A – V B меньше или равно -200 мВ – на выходе R 0 устанавливается низкий уровень. При переходе всех передатчиков в неактивное состояние и наличии в линии оконечной нагрузки дифференциальное входное напряжение приемника близко к нулю, вследствие чего на выходе приемника устанавливается высокий уровень. При этом запас помехоустойчивости по входу составляет 50 мВ. В отличие от приемопередатчиков предыдущего поколения, пороги -50 и -200 мВ соответствуют значениям ±200 мВ, установленным стандартом EIA/TIA-485.

Возможность «горячей» замены

Литература

  1. Application note 4491, «Damage from a Lightning Bolt or a Spark–It Depends on How Tall You Are!»;
  2. Application note 5260, «Design Considerations for a Harsh Industrial Environment»;
  3. Application note 639, «Maxim Leads the Way in ESD Protection».

RS-485 — это номер стандарта, впервые принятого Ассоциацией электронной промышленности (EIA). Cейчас этот стандарт назывется TIA/EIA-485 Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems (Электрические характеристики передатчиков и приемников, используемых в балансных цифровых многоточечных системах).
В народе RS-485 - это название популярного интерфейса, используемого в промышленных АСУТП для соединения контроллеров и другого оборудования. Главное отличие RS-485 от также широко распространенного RS-232 - возможность объединения нескольких устройств.

Описание интерфейса RS-485

Интерфейс RS-485 обеспечивает обмен данными между несколькими устройствами по одной двухпроводной линии связи в полудуплексном режиме. Широко используется в промышленности при создании АСУ ТП.

Скорость и дальность

RS-485 обеспечивает передачу данных со скоростью до 10 Мбит/с. Максимальная дальность зависит от скорости: при скорости 10 Мбит/с максимальная длина линии - 120 м, при скорости 100 кбит/с - 1200 м.

Количество соединяемых устройств

Количество устройств, подключаемых к одной линии интерфейса, зависит от типа примененных в устройстве приемопередатчиков. Один передатчик рассчитан на управление 32 стандартными приемниками. Выпускаются приемники со входным сопротивлением 1/2, 1/4, 1/8 от стандартного. При использовании таких приемников общее число устройств может быть увеличено в соответствующее число раз.

Протоколы и разъемы

Стандарт не нормирует формат информационных кадров и протокол обмена. Наиболее часто для передачи байтов данных используются те же фреймы, что и в интерфейсе RS-232: стартовый бит, биты данных, бит паритета (если нужно), стоповый бит.
Протоколы обмена в большинстве систем работают по принципу "ведущий"-"ведомый". Одно устройство на магистрали является ведущим (master) и инициирует обмен посылкой запросов подчиненным устройствам (slave), которые различаются логическими адресами. Одним из популярных протоколов является протокол Modbus RTU.
Тип соединителей и распайка также не оговариваются стандартом. Встречаются соединители DB9, клеммные соединители и т.д.

Подключение

Схема подключения

На рисунке изображена локальная сеть на основе интерфейса RS-485, объединяющая несколько приемо-передатчиков.
При подключении следует правильно присоединить сигнальные цепи, обычно называемые А и В. Переполюсовка не страшна, но устройство работать не будет. Как определить цепи по уровням, см. ниже.

  • Средой передачи сигнала является кабель на основе витой пары .
  • Концы кабеля должны быть заглушены терминальными резисторами (обычно 120 Ом).
  • Сеть должна быть проложена по топологии шины, без ответвлений .
  • Устройства следует подключать к кабелю проводами минимальной длины .

Уровни сигналов

Интерфейс RS-485 использует балансную (дифференциальную) схему передачи сигнала. Это означает, что уровни напряжений на сигнальных цепях А и В меняются в противофазе, как показано на приведенном ниже рисунке:

Передатчик должен обеспечивать уровень сигнала 1,5 В при максимальной нагрузке (32 стандартных входа и 2 терминальных резистора) и не более 6 В на холостом ходу. Уровни наряжений измеряют дифференциально, один сигнальный провод относительно другого.
В отсутствие сигнала на сигнальных цепях имеется небольшое смещение, порядка 200 мВ, для защиты приемников от ложных срабатываний. При этом цепь В имеет положительный потенциал относительно цепи А, что может служить ориентиром при подключении нового устройства к кабелю с немаркированными проводами.
На стороне приемника RS-485 минимальный уровень принимаемого сигнала должен быть не менее 200 мВ.

Искажения из-за неправильной разводки сети

Выполнение перечисленных выше рекомендаций гарантирует нормальную передачу электрических сигналов в любую точку сети на основе интерфейса RS-485. При несоблюдении хотя бы одного из требований сигнал искажается. Вот, например, осциллограммы сигнала, снятого в точке подключения приемника, расположенного в 15 метрах от передатчика и 30 метрах от конца линии, при включенном и отключенном согласующем резисторе:

Следующая осциллограмма показывает искажения сигнала, возникающие при подключении к основному согласованному кабелю длинным 3-метровым отводом:

Приведенные осциллограммы характерны для высоких скоростей обмена (1 Мбит/с и выше). Однако и на более низких скоростях не следует пренебрегать приведенными рекомендациями, даже если "оно и так работает".

При программировании приложений для контроллеров, использующих для связи интерфейс RS-485, следует учитывать несколько моментов:

  • Перед началом выдачи посылки нужно включить передатчик. Хотя некоторые источники утверждают, что выдачу можно начинать сразу после включения, мы рекомендуем выдержать паузу, равную или большую длительности передачи одного фрейма (включая стартовый и стоповый биты). В этом случае приемник успевает нормализоваться и подготовиться к приему первого байта данных.
  • После выдачи последнего байта данных следует также выдержать паузу перед выключением передатчика RS-485. Это связано с тем, что контроллер последовательного порта обычно имеет два регистра: параллельный входной для приема данных и выходной сдвиговый для последовательного вывода. Прерывание по передаче контроллер формирует при опустошении входного регистра, когда данные уже выложены в сдвиговый регистр, но ещё не выданы! Поэтому с момента прерывания до выключения передатчика нужно выдержать паузу. Ориентировочная длительность паузы - на 0,5 бита длиннее фрейма, для точного расчета следует внимательно изучить документацию на контроллер последовательного порта.
  • Поскольку передатчик и приемник интерфейса RS-485 подключены к одной линии, то собственный приемник будет "слышать" передачу своего же передатчика. Иногда, в системах с произвольным доступом к линии, это свойство используют для проверки отсутствия "столкновений" двух передатчиков. В системах, работающих по принципу "ведущий - ведомый", на время передачи лучше просто закрывать прерывания от приемника.

Рассмотрим как управлять преобразователем частоты с помощью протокола rs 485. Сделаем управление шпинделем автоматикой. Для этого у нас имеется:

  1. Токарный станок со шпинделем ET65A-800W.
  2. Частотный преобразователь завода Шнайдер Электрик Altivar 71.
  3. Модернизатор интерфейса RS232/RS485.
  4. Mach3 v.3.042.029.

Сначала делаем конфигурацию мача:

    1. Разрешаем работу по ModBus, поставив соответствующую галочку.
    1. В настройках шпинделя в подменю убираем ненужные галочки.

  1. Добавляем строку инициализации в меню general conf.
  2. Для работы нужно в частотном преобразователе два регистра – это управление CMD и установка с регистром. Чтобы было удобнее, выбираем частоту вращения двигателем уставкой.

Делаем конфигурацию поллинга:

Связующие элементы 19200 8-N-1. Сканирование с частотой 10 герц в размерной таблице. Поллинг нужен для того, чтобы в связи произошла самодиагностика, и частота преобразовалась. Если обмен сети прекратился на размер заданного перерыва, то частотник выдает ошибку.

Исправляем VBA скрипты:

M3
SetModOutput(0,&H0006)
SetModOutput(1,0)
DoSpinCW()
SetModOutput(0,&H000F)

M4
SetModOutput(0,&H0006)
SetModOutput(1,0)
DoSpinCCW()
SetModOutput(0,&H000F)

SetModOutput(0,&H0006)
SetModOutput(1,&H0000)
DoSpinStop()

rpm = GetRPM()
SetSpinSpeed(rpm)
SetModOutput(1,rpm)

Исправляем постпроцессор:

@start_tool
if only_xyz eq false
if tool_direction eq CW then
mcode = 4
else ; CCW
mcode = 3
endif

call @gen_nb
; {‘S’spin:integer_def_f, ‘ M’mcode}
{‘M’mcode}
call @gen_nb
{‘S’spin:integer_def_f}
call @gen_nb
{‘M8’}
endif
endp
Работаем по связке SolidWorks/SolidCAM.
Этот метод управления обладает преимуществами и отличается от ШИМ преобразователей:
— если скорость шпинделя равна нулю, то мотор гарантированно отключается;
управляющая программа имеет возможность обмениваться информацией с частотным преобразователем;
— реальные обороты двигателя интерпретируют с заданием частотника;
— на большом расстоянии связной линии выделена хорошая адаптивность к помехам (до одного километра).

Подробнее про управление частотником по протоколу RS-485.

RS-485 применяет пару витую с экраном с землей и сигналом. Земля с сигналом обязательна, но не применяется для исчисления состояния линии в логике. Коммутатор, управляющий линией баланса (balanced line driver), имеет сигнал входа «Enable» (Разрешен), используемый для управления мониторами выхода этого устройства. Если сигнал «Enable» отключен, то это обозначает, что устройство выключено от линии, и в этом положении устройство всегда называется «tristate» (т.е. третье состояние, вместе к двоичным 1 и 0).

Стандартное значение на RS-485 обуславливает только 32 пары передачи и приема, но изготовители увеличили возможности RS-485 протокола, поэтому, теперь он будет поддерживать от 128 до 255 устройств на единичной линии, при использовании репитеров можно увеличивать RS-485/RS-422 очень намного. Если использовать RS-485 можно, и в с длинным проводом или огромного количества устройств надо, применять терминаторы, встроенные в устройства с RS-485 протоколом, но при коротком проводе, видимое ухудшение связи при применении терминаторов.

Так же номинал на RS-485 обуславливает применение двухжильной витой пары с экраном, такой 2-wire RS-485, но будет применение и витой пары из четырех проводов (4-wire RS-485), тогда будет целый дуплет. В этом случае, нужно, чтобы одна конструкция была создана как ведущая (Master), а другие как ведомые (Slave). Тогда многие ведомые конструкции сообщаются только с ведущей конструкцией, и никогда не отдадут ничего прямо друг другу. В этих случаях как всегда RS-422 драйвер применяется как ведущая конструкция, т.к. RS-422 имеет допуск подключения только как master/slave, а RS-485 конструкции как ведомые, для снижения цены системы. Стандарт на RS-422 с самого начала обуславливает применение четырехжильной витой пары с экраном, но имеет допуск соединения всего от одной конструкции к другой (до 5 драйверов и до 10 ресиверов на драйвер). RS-422 был создан, чтобы заменить RS-232 тогда, когда RS-232 не обеспечивает скоростной режим и дальности передачи.

RS-422 применяет чисто размещенные провода (две пары): для приема одну, для отдачи тоже одну (и по одной на все сигналы контроля и подтверждения (control/handshake)). RS-485 имеет наличие третьего состояния («tristate») и может использовать одну пару проводов, что снижает цену системы и обеспечивает связь на длинные дистанции. В настоящее время доступно много разных устройств для соединения RS-422/RS-485 с RS-232, причем RS-232 часто применяется для совмещения с ЭВМ (но, есть и карты интерфейса RS-422/RS-485 в компьютер), который применяется чтобы управлять системой. Имеют место и разнообразные приборы (хабы, репитеры, переключатели и др.) для обеспечения сложных конфигураций RS-422/RS-485 сетей, так что RS-422/RS-485 скрывают в себе много возможностей.

Как сделать разводку сетей RS-485 правильно?

RS-485 отдает информацию в цифровом виде между объектами. Данные могут передаваться со скоростью 10 Мбит/с. RS-485 применяется для отдачи сигнала на повышенную протяженность. Протяженность и скорость данных для RS-485 зависит от разных факторов.

Кабель.

RS-485 сконструирован как система баланса. Это значит, что есть два провода, использующиеся для передачи данных.

Рис. 1. Система баланса пользуется двумя жилами на передачу сигнала.

Эта система является балансной, так как сигнал на двух проводах с обоих концов является точно противоположным. См. Рис. 2.

Рис. 2. Данные отличающиеся с двух сторон проводов.

RS-485 должен использоваться с проводкой «витая пара».

Почему пользуются проводкой «витая пара»?

Это простая пара проводов, имеющих одинаковую длину. Они вместе свиты. Передатчик с кабелем из витой пары снижает две проблемы для создателей скоростных сетей, производимых электромагнитные и индуцируемые помехи.

Электромагнитные излучаемые помехи.

На рисунке показано, что при использовании импульсов с большими фронтами, в сигнале есть составляющие высокой частоты. Такие фронты необходимы для повышенных скоростей, чем может дать RS-485.

Рис. 3. Прямоугольные импульсы.

Компоненты высокой частоты этих фронтов с большими проводами приводят к излучению помех электромагнитных. Система баланса использует линии связи витой парой, снижает эффект, излучатель становится ненужным. Данные на проводах одинаковы, инверсные, сигналы окажутся тоже равными и инверсными. Это делает эффект снижения одного сигнала из-за другого. Это значит, что отсутствует электромагнитное излучение. Но это только предположение. Совмещение проводов дает нейтрализацию облучения из-за протяженности между жилами.

Электромагнитные индуцируемые помехи.

Это та же проблема, только наоборот. Соединения в системе на основе RS-485 работают как антенна. Эти сигналы искажают нужные сигналы, которые приводят к проблемам в данных. Она также может уменьшить зависимость помех. Шум одного провода тот же, что и на втором проводе. Его называют синфазным. Они подавляют шум обоих проводов.

Сопротивление витой пары в виде волн.

Переплетенная пара имеет свойства волн, которые определены производителем. RS-485 обуславливает, чтобы размер резистора был равен 120 Ом. Такая рекомендация импеданса нужна для подсчета худшей нагрузки в интервале синфазных напряжений в RS-485. Спецификация не дает такой импеданс для гибкости. Если нельзя использовать кабель сопротивлением 120 Ом, то нужно, чтобы худший вариант нагрузки и худший диапазон напряжений снова были просчитаны, чтобы убедиться, что система работает. Передатчик может управлять только одной витой парой, другое не предусмотрено спецификацией.

Согласующие резисторы.

Резистор согласующий– это обыкновенный резистор на одном конце кабеля. Размер резистора согласующего равен сопротивлению волновому кабеля.

Рис. 4. Резисторы согласующие имеют одинаковое сопротивление с витой парой.

Если значение двух резисторов отличается от волнового кабеля, то будет отражение, сигнал будет вворачиваться обратно. Расхождения вызывают отражение, чтобы сделать ошибки в данных.


Рис. 5. Сигнал получен с MAX3485. Сигнал справа получен при согласовании с резистором.

Нужно согласовать большую приближенность размера резистора согласующего и волнами. Не важно куда устанавливать согласующий резистор, на обоих концах кабеля.

По правилу резисторы согласования помещаются на концах кабеля, хотя лучше согласование обоих концов сделать критичным для многих дизайнов системы. В одном случае надо только один резистор. Этот случай есть в системе, где есть передатчик. Он находится на другом конце кабеля. Не нужно помещать резистор на конце кабеля вместе с передатчиком, так как сигнал идет от него.

Наибольшее число приемников и передатчиков в сети.

Обычная сеть на RS-485 состоит из приемника и передатчика. RS-485 дает гибкость, разрешает больше передатчиков и приемников на паре. Максимальное число зависит от загрузки системы.

В идеале передатчики и приемники будут иметь большой импеданс и не загрузят систему. Реально так не может быть. Подключенный приемник повышает нагрузку. В помощь разработчику сети RS-485 узнать какое количество устройств будут добавлены в сеть, создали единицу нагрузки. Такие конструкции характеризуются множителями или нагрузкой.

Приемник и передатчик по одному.

Резистор согласованный на проводе в стороне передатчика. Можно передвигать передатчик в ближние края провода, а прибавить передатчики в сеть.

Рис. 6. RS-485 имеет по одному приемнику и передатчику.

Несколько приемников и один передатчик.

Здесь очень важно, чтобы протяженность от витой пары была наименьшая.

Рис. 7. Сеть с несколькими приемниками и одним передатчиком.

Неправильные сети. Несогласованная сеть.

Сравним формулировку данных от неправильной сети разработанной системы. Она была измерена в точках А и В. Здесь на краях пары резисторов для согласования. Сигнал идет от источника, сталкивается с цепью на кабеле. Это ведет к разрушению импедансов, отражению. В открытой цепи энергия идет назад, вызывает искажение сигнала.


Рис. 8. Сеть несогласована. Форма сигнала отличается от правильной.

Расположение терминатора неправильное.

Резистор согласованный есть, но размещен отлично от другого конца кабеля. Сигнал сталкивается с импедансом и его рассогласованием, соединяется на резисторе. Сопротивление было согласовано с кабельным сопротивлением. Дополнительный кабель дает рассогласование и отражает экран. Другое рассогласование – это другой конец кабеля.

Рис. 9. Сеть с резистором, который размещен неправильно, его сигнал.

Кабели составные.

Проблема состоит в драйверах, которые разработаны чтобы управлять одной витой парой. Не любой передатчик может управлять 4-мя витыми параллельными парами. Уровни логические минимальные не гарантируются. Вместе с большой нагрузкой есть различие импедансов в месте, где соединены кабели. Различие импедансов значит отражение и искажение сигнала.

Рис. 10. Некорректная сеть с несколькими парами.

Удлиненные ответвители.

Кабель согласован, нагружен передатчик на витую пару одну. Проводной сегмент в точке подключения приемника слишком длинный. Большие ответвители оказывают большое рассогласование импеданса и отражают сигнал. Ответвители делают наименьшей длины.


Рис. 11. Сеть с трехметровым ответвителем и сигнал в итоге в сравнении с сигналом с маленьким ответвителем.

Какие действия нужны, чтобы разобраться с управлением по протоколу rs485?

  1. Поиск документации на конструкцию. Она приложена в печатном виде к частотнику и актуальна для него. Документы могут быть приложены в электронном виде на диске. Можно найти документацию в Интернете.
  2. Выясняем номера ревизии, версии. Наша цель – версия программы.
  3. Изучение документов по специфическим словам.
  4. Поиск подключающей схемы связующего кабеля и цоколевку разъема.
  5. Поиск описания регистров Modbus. Это карта памяти. Регистры называются переменными.
  6. Определение типа адресации переменных. В Modbus есть два типа различных адресации, логическая и физическая.
  7. Указание поиска в направлении. Это ответственный шаг.