F.A.Q. о котлах и отоплении

Были испытаны в полевых условиях на многих установках. Практика показала, что срок службы превышает 30 лет. Фотоэлектрические станции, работающие в Европе и США около 25 лет, показали снижение мощности модулей примерно на 10%. Таким образом, можно говорить о реальном сроке службы солнечных монокристаллических модулей 30 и более лет. Поликристаллические модули обычно работают 20 и более лет. Модули из аморфного кремния (тонкопленочные, или гибкие) имеют срок службы от 7 (первое поколение тонкопленочных технологий) до 20 (второе поколение тонкопленочных технологий) лет.

Солнечные модули обычно деградируют быстрее в первые 2 года эксплуатации. Тонкопленочные модули теряют от 10 до 30% мощности в первые 2 года эксплуатации, поэтому обычно новые они имеют запас мощности около 15-20%. Около 90% рынка фотоэлектрических модулей в настоящее время составляют кристаллические кремниевые модули, т.к. их деградация гораздо меньше, а срок службы - больше, чем у других типов солнечных модулей (см. таблицу ниже).

Как быстро солнечные панели деградируют/теряют свою эффективность?

Типичная деградация мощности солнечных панелей составляет 0.5% в год. Как указывалось выше, тонкопленочные солнечные панели (a-Si, CdTe и CIGS) деградируют быстрее, чем моно и поликристаллические панели. Ниже приведена таблица с данными по деградации солнечных панелей, произведенный до 2000 года и после 2000 года. :

Каков ожидаемый срок службы солнечных панелей?

Ниже приведен график типичной гарантии на выработку мощности солнечными панелями от различных производителей:

Как видим, большая часть производителей гарантирует работу солнечных модулей в течение 25 лет, при этом снижение мощности не будет превышать 20% к концу этого срока.

Многие производители дают гарантию на свои модули на период от 10 до 25 лет. При этом они гарантируют, что мощность модулей через 10 лет снизится не более, чем на 10%. Гарантия на механические повреждения дается обычно на срок от 1 до 5 лет.

Что будет с моими солнечными батареями после 25 лет эксплуатации?

Честно говоря, мы не знаем. До сих пор нет достаточных статистических данных по этому вопросу, т.к. фотоэнергетика - довольно молодая отрасль, и подавляющее большинство модулей, находящихся сейчас в эксплуатации. сделаны менее 10 лет назад. Однако, те данные, которые существуют, позволяют говорить о том, что солнечные батареи будут работать гораздо дольше обещанных производителями 25 лет:

  • Солнечная панель 33W (Arco Solar 16-2000) на самом деле имеет лучшие показатели, чем обещаны в ее спецификациях через 30 лет работы.
  • Первая в мире солнечная панель продолжает работать уже 60 лет.
  • Kyocera отчиталась о солнечных установках, которые продолжают успешно и надежно работать через 30 лет эксплуатации.

Максимальное ухудшение обычно гарантируется производителями на уровне не более 20% за 25 лет. Однако измерения, проведенные на реально работающих с 1980 годов модулей показывают, что их выработка уменьшилась не более, чем на 10%. Очень многие из этих модулей и до сих пор работают с заявленными при производстве параметрами (т.е. нет деградации). Поэтому можно смело говорить, что модули будут работать не менее 20 лет, и с высокой вероятностью обеспечат высокие показатели и через 30 лет с момента начала работы.

Современные технологии производства солнечных панелей существенно улучшены, и солнечные панели, которые продаются сейчас еще более надежны, стабильны и эффективны.

Все это означает, что если при расчетах окупаемости солнечных энергоустановок был принят срок службы солнечных панелей 20 лет, то далее они будут генерировать электрическую энергию бесплатно .

Мы уверены, что качественные солнечные панели будут работать генерировать электроэнергию и через 30 – 40 лет после установки.

Что можно сделать для увеличения срока службы солнечных панелей?

  • Избегайте физических повреждений панели (т.е. падения деревьев, веток, срыва ветром, царапин на модуле). Чем больше царапин на поверхности модуля, тем меньше его эффективность. В самом плохом варианте влага и вода может попасть между стеклом и защитной пленкой и привести к короткому замыканию и/или коррозии контактов солнечных элементов.
  • Регулярное обслуживание и чистка очень важны. См. Best Way to Clean Solar Panels .
  • Чем тяжелее климатические условия, в которых работают солнечные панели, тем быстрее они будут деградировать. Поэтому, в некоторых случаях имеет смысл устанавливать ветрозаграждающие конструкции.

Какой срок службы имеют другие компоненты солнечной энергосистемы?

Другие компоненты системы имеют различные сроки службы: аккумуляторные батареи имеют срок службы от 2 до 15 лет (в среднем 4-10 лет), а силовая электроника - от 5 до 20 лет (в среднем 10-12 лет)

Продолжить чтение

    Как правильно выбирать солнечные элементы и модули В первую очередь, нужно обратить внимание на технические параметры солнечного модуля. Основные из них перечислены ниже. Также, нужно проверить качество изготовления и отсутствие визуальных дефектов на солнечных элементах, стекле, защитной пленке и раме…

Одним из главных критериев при покупке любого товара является его срок годности, ведь с течением времени любой прибор выходит из строя. Это правило действует и для солнечных батарей. Их стоимость на сегодняшний день достаточно велика, и от того как долго проработают батареи, можно будет судить, успеют они окупить себя или нет.

Из наших предыдущих статей вы уже знаете, что солнечная система энергообеспечения состоит из 4-х основных элементов: солнечных батарей, аккумулятора, инвертора и контроллера заряда/разряда. Срок службы у них всех различный. Самым «стойким» компонентом считаются СБ, но в любом случае все зависит от типа панели, производителя и многих других факторов.

Срок службы в зависимости от типа батареи

В зависимости от материала, на основе которого сделаны фотоэлементы, варьируется и срок годности панелей. Самым распространенным вариантом считаются кремниевые СБ, но и здесь нет определенной цифры. Для солнечных батарей из поликристаллического кремния срок эксплуатации составляет около 20 лет и более, из монокристаллического – от 30 лет и более, а вот батареи, изготовленные на основе аморфного кремния, проживут не более 10 лет.

Но это еще не все подводные камни. Мало кто задумывается, что с течением времени мощность модулей постепенно снижается. Аморфные панели уже за первые два года эксплуатации потеряют от 10 до 40% первоначальной мощности, для кристаллических батарей этот показатель значительно меньше – 10% за 25 лет. Большинство производителей дают гарантию на свою продукцию 10-25 лет. Получается, что при правильной эксплуатации минимальный срок годности солнечных панелей составит не менее четверти века. Согласитесь, не каждый прибор может похвастаться такими показателями. И что немаловажно, все эти цифры были получены не в лабораторных условиях, а в результате тестирования СБ, установленных еще в 70-80-х годах.

Факторы, влияющие на срок службы

Просчитать срок жизни солнечных батарей с точностью до года невозможно. Существует немало факторов, которые влияют на рассматриваемый показатель. Резкие перепады температур, чрезмерный нагрев солнечных батарей – все это может сократить срок их жизни на несколько лет. Причем сами фотоэлементы практически вечны, разрушаются другие составные части панелей:

  • Задняя поверхность модуля.
  • Пленка, применяемая для герметизации.
  • EVA прослойка между фотоэлементами и стеклом.

Под действием ультрафиолетового излучения происходит разрушение слоя герметика, который применяется для защиты элементов и электрических соединений от влаги. Этот процесс приводит к уменьшению эластичности фотоэлементов и как следствие к механическим повреждениям. Замутнение EVA прослойки становится причиной снижения эффективности работы солнечных батарей, так как меньшее количество света попадает на фотоэлементы. Если Вы планируете изготовить СБ своими руками, помните, что герметик увеличивает срок жизни панели. Покрыв модули обычным силиконом, Вы сделаете их более прочными, это позволит панелям выдерживать резкие перепады температур и другие вредные внешние воздействия.

Не всегда стоимость является объективным критерием качества, но игнорировать ее тоже не стоит. Приобретая дешевые китайские панели, Вы должны быть готовы к тому, что срок их годности будет значительно меньше, чем у батарей, изготовленных на зарекомендовавших себя заводах. Даже небольшие зазоры в раме или неаккуратно спаянные элементы должны восприниматься Вами как весомый аргумент в пользу отказа от подобных модулей.

Российские ученые на передовую…

Солнечная энергетика в России развивается очень медленно, но это не мешает нашим ученым делать инновационные открытия в этой сфере. На этот раз отличились красноярские ученые, которые представили СБ, срок службы которых достигает 100 лет. Как Вы понимаете это в 3 – 4 раза больше, чем у существующих аналогов. Разработанные модули получили вполне логичное название «ВЕК».

И что самое интересное, предложенная ими технология и в вопросе финансовых затрат намного выгоднее. Получается, что красноярские СБ не только проживут дольше, но и обойдутся дешевле. Одни только плюсы. Разработанная технология была удостоена награды «За успешное продвижение инноваций в солнечной энергетике» на конкурсе, который прошел в Москве.

Статью подготовила Абдуллина Регина

Подробнее о работе солнечных панелей:

Перед установкой автономного энергоснабжения возникают обычно два вопроса: «Сколько прослужит система?» и «За какой период она окупится?». Ведь именно от ответов на эти вопросы и зависит целесообразность расходов на приобретение и монтаж автономного контура. Срок службы солнечных панелей различен. Он зависит прежде всего от типа самих панелей.

Сроки службы

Как показали практические испытания, ресурс гелиопанелей составляет не менее 20 лет. После определенного количества времени (15-20 лет, в зависимости от типа и особенностей фотоячеек) наблюдается некоторое снижение мощности, которое и продолжается в дальнейшем. Как правило, батареи на монокристаллах работают до 30 лет, на поликристаллах – 20-25 лет. Тонкопленочные батареи последних поколение также служат порядка 20 лет.

Стандартная гарантия для большинства производителей солнечных панелей варьируется в достаточно значительных пределах – от 10 до 25 лет. Связан такой разброс с особенностями самих фотоячеек, их типом (поли-, моно-), классом («A», «B», «C»), качеством защитного лицевого покрытия и т.д.

Производители гарантируют, что в течение этого срока мощность их продукции снизится не более, чем на 10%. Падение мощности на более значительную величину чревато критическим снижением выработки всей системы, поскольку для солнечных электростанций очень важен каждый ватт произведенной энергии. Батареи из аморфного кремния, как правило, теряют 10-40% мощности в первые сезоны, после чего их выработка «замирает» на этом уровне.

Что влияет на срок службы

Стандартный расчетный срок использования кристаллических солнечных панелей – 30 лет. Чтобы выяснить скорость реального старения элементов, проводятся целые серии разного рода тестов. Они показывают, что сами фотоячейки имеют очень большой ресурс, их деградация после нескольких десятилетий использования минимальна.
Падение же производительности солнечных батарей связано с тремя факторами:

  • разрушение герметизирующей модуль пленки;
  • замутнение пленочной прослойки между фотоячейками и защитным стеклом;
  • разрушение тыльной пленки солнечной батареи.

Для герметизации солнечных панелей (равно как и в качестве пленочной прослойки) применяется пленка EVA (ethylene vinyl acetate, так называемая «этиленвинилацетатная»). Тыльная же сторона панели обычно представляет собой поливинилфосфатную пленку.

Такая пленочная защита необходима для предохранения фотоячеек и паяных соединений панели от действий влаги. Под действием УФ-лучей солнечного спектра пленки постепенно разрушаются, они теряют свою эластичность и легче поддаются механическим воздействиям. Как следствие, ухудшается герметичность и влага начинает активнее просачиваться внутрь панели.

Кроме того, EVA-пленка между стеклом и фотоячейками теряет и свою оптическую прозрачность, что приводит к уменьшению поглощения солнечных лучей. А из-за микрокапель влаги паяные соединения постепенно начинают корродировать, что приводит к увеличению сопротивления контакта, его перегреву и последующему разрушению.

Как правило, производители гарантируют ухудшение работы своих солнечных батарей не более, чем на 20% за 25 лет. Однако это относится только к зарекомендовавшим себя фирмам, которые тщательно следят за качеством продукции. Менее добросовестные компании при сборке панелей экономят на всем, чтобы выставить как можно более низкую итоговую цену продукта.

Такая экономия приводит к тому, что для герметизации используются некачественные (или неподходящие для специфичных условий солнечных батарей) материалы. Как следствие, разрушение контактов может наблюдаться уже на следующий сезон, что приводит к резкому падению мощности (вплоть до 30-40%). Особенно часто подобное явление можно наблюдать на дешевых садовых светильниках с фотобатареями.

Дополнительные факторы

На срок службы влияет и качество самой EVA-пленки, равно как и защитного ламинирующего покрытия. Некачественное покрытие дает ощутимую усадку уже в первый же сезон. Это приводит к практически полной разгерметизации панели, резкому снижению КПД и выходу изделия из строя.

Еще один аспект – толщина соединительных проводников и токопроводящих шин. Она должна быть достаточной для пропускания токов именно той мощности, которая заявлена в паспорте солнечной панели. Причем толщина шины должна быть больше, чем у проводников, соединяющих между собой фотоячейки. Если шина будет слишком тонкой (что нередко встречается в дешевых панелях малоизвестных фирм), то в скором времени она выйдет из строя.

Также влияет на срок работы и качество паяных соединений. Плохо выполненная пайка разрушается очень быстро и без воздействия коррозии, так как такие контакты сами по себе сильно перегреваются. Поэтому надежность паяных соединений – непременное условие длительной работоспособности.

Период окупаемости

Сроки окупаемости солнечных панелей зависят от нескольких факторов:

  • Тип оборудования (поли- или моноячейки, одно- или многослойная структура солнечной батареи). От этого зависят первоначальные расходы, так как стоимость солнечных панелей разных типов варьируется довольно сильно.
  • Количество устанавливаемых панелей. Именно поэтому очень важно заранее провести точный расчет всей системы.
  • Географическая широта, точнее, величина инсоляции: чем больше солнца попадает на рабочую поверхность модуля, тем больше он вырабатывает энергии и тем быстрее «отбивает» затраты.
  • Расценки на энергоресурсы в регионе. От стоимости киловатт-часа электроэнергии будет зависеть разница в стоимости выработанной солнцем энергии и энергии, полученной из центральной электросети. Иными словами, насколько выгоднее вырабатывать «солнечное электричество».

В среднем для частного дома сроки окупаемости составляют 2,5-3,5 года в среднеевропейских странах и 1,5-2 года в южноевропейских. Для России этот показатель варьируется в средних пределах от 2-х до 5-ти лет. Однако нужно помнить, что с совершенствованием технологий изготовления повышается КПД (энерговыработка) панелей, а значит, постепенно снижается и срок окупаемости.

Использование энергии солнца - это альтернатива невосполняемым источникам энергии. Современные технологии позволяют использовать солнечные батареи для уличного освещения, отопления и освещения небольших домов. Сегодня уже не редкость солнечные батареи для дачи, которые позволяют в летний период обеспечить хозяйство электроэнергией.

Солнечные батареи

Устройство, которое представляет собой большое количество фотоэлектрических преобразователей, соединенных в единую систему, и есть солнечная батарея.

Для солнечной батареи важно наличие прямых солнечных лучей, энергия которых преобразуется в электрический ток.

Устанавливаются батареи в тех районах, где солнечные дни составляют большую часть года. Правда, на эффективность работы солнечных батарей влияет еще и географическая широта. Ведь чем дальше от полюса, тем мощнее солнечные лучи. Но даже в средней полосе России зимой солнечные батареи снижают потребление электроэнергии из общих сетей, а летом появляется возможность даже продавать ее излишки.

Солнечные батареи бывают монокристаллические, поликристаллические и тонкопленочные.

Направленные в разные стороны кристаллы в поликристаллических батареях позволяют снизить зависимость от прямых солнечных лучей. Такие батареи сегодня наиболее распространены, их используют для освещения общественных зданий и частных домов. Часто уже встречается и именно поликристаллического типа.

Солнечные батареи для дачи

Еще совсем недавно главным аргументом против установки была их стоимость. Сегодня эту продукцию начинает выпускать отечественная промышленность, цены на нее становятся ниже, выбор - шире, а сервисное обслуживание - доступнее.

Современные технологии вполне способны справиться с освещением участка и обеспечить работу бытовых приборов. Правда, при этом нужна аккумуляторная а еще контроллер заряда и инвертор, который преобразует постоянный ток в переменный.

Сегодня можно приобрести готовый комплект солнечной миниэлектростанции для дачи или небольшого дома с автономностью работы в течение 24 часов. Мощность такой электростанции - 235 Вт при мощности аккумуляторной батареи 2,4 кВт*ч.

Аккумуляторы для солнечных батарей

Аккумуляторные батареи являются важной частью оборудования современной гелиосистемы.

В яркие солнечные дни солнечные батареи вырабатывают значительно больше электрической энергии, чем потребляют электроприборы, а ночью, когда особенно важно освещение, не работают вообще. Значит, необходимо накапливать и хранить электроэнергию для последующего ее использования.

Аккумуляторная и предназначена для равномерного и бесперебойного электроснабжения.

Также аккумуляторные перекрывают пиковые нагрузки, слишком большие для фотомодулей, используют накопленную энергию в темное время суток, компенсируют разницу выработанной и потребленной энергии в пасмурную погоду.

Способы подключения АКБ

Чаще всего одного аккумулятора не хватает для полноценной работы солнечной электростанции, и приходится использовать несколько однотипных батарей. Специалисты считают, что они вообще должны быть из одной партии.

Для повышения общей емкости системы используются три способа соединения (коммутации) АКБ.

При параллельном соединении складываются емкости всех батарей, а общее напряжение равно напряжению в одном устройстве.

Последовательное соединение, напротив, позволяет просуммировать все напряжения, а емкость остается равной емкости одной батареи в схеме.

Самым производительным является комбинированное последовательно-параллельное соединение, при котором суммируются как напряжения, так и емкости.

Правда, при таком соединении АКБ подвержены разбалансировке, то есть суммарное напряжение будет постоянным расчетным, а вот для каждого отдельного аккумулятора его показания будут меняться. Такое явление приводит к тому, что часть батарей недозаряжается, а часть заряжается выше нормы, и ресурс вырабатывается преждевременно.

Поэтому в комплект каждой гелиосистемы обязательно входит контроллер заряда солнечных батарей и перемычки, с помощью которых соединяют средние точки для самовыравнивания напряжения в АКБ.

Особенности аккумуляторных батарей для гелиосистем

Аккумуляторная батарея для солнечной батареи должна удовлетворять целому ряду требований. Она должна выдерживать большое количество циклов заряда/разряда. При этом саморазряд должен быть минимальным, а величина зарядного тока - большой, диапазон рабочих температур - широким.

Сегодня производители уже выпускают специальные аккумуляторные батареи, так называемые солнечные аккумуляторы, которые этим требованиям полностью отвечают.

Комплект солнечных батарей с такими устройствами и контроллером заряда позволяет накапливать энергию и хранить ее с максимальной эффективностью. А сетевой инвертор - преобразовать ее для подключения бытовых приборов и освещения.

Критерии выбора

Выбирать нужно по нескольким параметрам.

Самый важный из них - это емкость. Исходя из необходимого энергопотребления рассчитывается расчетный показатель емкости, увеличивается на 35-50%, и уже по нему подбирается одно или несколько устройств для параллельного подключения. АКБ с достаточной емкостью держит энергию до 4 суток.

Длительность разрядки и зарядки. Из двух устройств с одинаковым номиналом емкости предпочтительнее то, для которого требуется меньший интервал времени для зарядки.

Емкость свинцового аккумулятора зависит от массы свинца в нем, поэтому чем больше масса АКБ, тем выше его реальная емкость. При выборе нужно обращать внимание на вес и габариты устройства.

Производители задают для своей продукции диапазон рабочих температур и периодичность обслуживания, на эти показатели тоже следует обращать внимание.

В сопроводительных документах всегда указывается срок использования АКБ, количество разрядочных циклов (чем больше этот показатель при прочих равных условиях, тем лучше) и величина саморазряда в месяц.

При расчете параметров аккумуляторной батареи нужно учитывать потери энергии при ее хранении и преобразовании. Эффективность современных устройств для гелиосистем составляет примерно 85%.

Виды аккумуляторов для солнечных батарей

Привычные автомобильные аккумуляторы не рассчитаны на большое количество циклов и отличаются значительным саморазрядом. Для гелиостанций используются совершенно другие устройства.

1. AGM-аккумуляторы, в конструкции которых между абсорбирующими стекломатами находится в связанном состоянии электролит. Такое устройство может эксплуатироваться в любом положении, при низкой цене и глубине заряда около 80% выдерживают до 500 циклов и отличаются высоким уровнем заряда.

Срок из эксплуатации не так велик - 5 лет, и диапазон рабочих температур ограничен 15-25 °С, но они быстро заряжаются - требуется меньше 8 часов на полное восстановление, могут транспортироваться в заряженном состоянии и эксплуатироваться в помещении с недостаточной вентиляцией.

AGM-аккумуляторы быстро выходят из строя из-за перезаряда, но недозаряд переносят вполне удовлетворительно.

2. Гелевая батарея для солнечной батареи тоже может работать в любом положении. Желеобразный гелевый электролит удерживается в порах силикагеля, который служит разделителем для пластин. Неоспоримое достоинство такой конструкции - электроды не осыпаются, потому что все свободное пространство заполнено гелем, а значит, исключена возможность короткого замыкания. Кроме того, они выдерживают полную разрядку и значительное число циклов, примерно в полтора раза больше, чем у аналогичных AGM-аккумуляторов. Но и цена их заметно выше.

Несмотря на цену, гелевые аккумуляторы экономичней, не нуждаются в обслуживании, могут в полностью разряженном состоянии без ущерба находиться несколько дней, потери энергии в них незначительны из-за малого саморазряда.

3. OPzS аккумуляторы, так называемые заливные устройства с жидким электролитом, не требующие обслуживания, разработаны специально для разрядки малыми токами. Они выдерживают очень большое количество глубоких циклов, используются, как правило, в мощных дорогих солнечных системах, и сами стоят достаточно дорого.

Контроллер заряда солнечных батарей

Электронные устройства предназначены для контроля и регулировки уровня заряда на аккумуляторе. Именно они предохраняют АКБ как от полной разрядки, так и от излишней зарядки.

Контроллеры заряда - очень важные элементы солнечных батарей. Они обеспечивают многостадийный заряд АКБ, автоматическое отключение при полном заряде батареи и при минимальном заряде - нагрузок, подключение фотомодулей, когда батарею нужно зарядить, и переподключение нагрузок после зарядки.

Самый дешевый и примитивный вид контроллеров типа On/Off отключает солнечные батареи от АКБ, когда напряжение достигает предельного значения, не давая аккумуляторам зарядиться полностью и тем самым сокращая их ресурс.

PWM-контроллеры, работающие по ШИМ (широтно-импульсная модуляция) - технологии, экономичны и эффективны в районах с высокой активностью солнца. Они прекращают заряд, позволяя аккумулятору при этом полностью зарядиться. Устанавливаются такие устройства в маломощных, до 2 кВт, системах с аккумулятором малой емкости.

МРРТ-контроллеры управляют максимальными энергетическими пиками. Они наиболее эффективны в гелиосистемах, но и значительно дороже устройств других моделей.

Производители аккумуляторов для солнечных батарей

На российском рынке не так много производителей этого вида продукции.

Компания CSB Battery Co., Ltd (Тайвань) предлагает свинцово-кислотные АКБ, изготовленные по со сроком службы до 10 лет, рассчитанные на напряжение 12 В, емкостью от 26 до 100 А*ч по цене от 2,6 до 8,2 тыс. рублей.

Примерно такие же аккумуляторы выпускает Shandong Sacred Sun Power Sources Co., Ltd (Китай).

HAZE Battery Company Ltd (Великобритания) поставляет гелевые АКБ со сроком службы до 12 лет, рабочим напряжение 12 В, емкостью от 15 до 230 А*ч и диапазоном температур от -20 до +50 °С по ценам от 7 до 28 тыс. рублей.

SSKGroup (Россия-Бельгия) выпускает надежные гелевые аккумуляторные батареи для солнечных батарей с пламегасителем со сроком службы 15 лет, емкостью от 100 до 180 А*ч по ценам от 11 до 19 тыс.рублей.

Производители солнечных батарей

Основными производителями солнечных батарей долгое время были Япония, Германия, США и Китай. Российские солнечные батареи собираются из материалов, произведенных в этих странах. Самые популярные отечественные солнечные батареи с доступной ценой изготавливаются из поликристаллического кремния, произведенного в Германии и США.

Сегодня российские производители не только производят солнечные модули, но и разрабатывают новые, как, например, «Квант» в Москве.

Краснодарская компания «Солнечный ветер» производит не только модули, но и готовые домашние гелиостанции. Проектирует готовые гелиосистемы и «СоларИннТех» из Зеленограда.

На отечественном рынке все больше оборудования для гелиосистем, включая готовые типовые проекты. Но при некоторых инженерных навыках и усидчивости можно самостоятельно рассчитать систему для конкретных условий эксплуатации и подобрать необходимое оборудование: солнечные батареи, аккумуляторы, контроллеры разных производителей в широком ценовом диапазоне. При этом можно сэкономить на некоторых составляющих, собрав их самостоятельно из подручных материалов, например, контроллер.

Солнечные батареи можно купить для электроснабжения частного дома, дачи или другого помещения. Сложность их выбора состоит в необходимости создания сбалансированной системы из разных элементов. К ним относятся: фотопанели и аккумулятор, инвертор и контроллер.

Как устроена и работает солнечная батарея

Солнечная батарея представляет собой независимый источник электроэнергии. Устройство состоит из ряда полупроводников, которые преобразовывают солнечное излучение в ток. Размер поглощающих панелей варьируется от пары миллиметров до нескольких метров.

Батарея состоит из двух слоев с разной проводимостью. Солнечная энергия выбивает электроны из катода и они попадают в пустоши анода. Получается их круговорот. Исторически первым фотоэлементом был селен. Но его производительность была низкой.

В 1954 представители телекоммуникационной компании США предложили заменить его кремнием. И уже через 4 года был запущен спутник на фотоэлементе из него. Эффективность монокристаллического материала составляет 17 %, а поликристаллического - 15 %.

Со времен производства первых солнечных батарей их стоимость существенно упала.

Для продолжительности срока службы, устройства элементы шунтуются диодами. Что уменьшает итоговое сопротивление цепи. Обычно их размещают на каждой четверти длины батареи. Такая конструкция особенно важна, когда часть панелей находится в тени. Диоды не позволяют превращаться им в потребителей тока.

Накапливаемое электричество сохраняется в аккумуляторе. Напряжение которого меньше, чем поступающий потенциал. Процесс заряда и его скорость проверяется специальным контроллером.

Эффективными считаются свинцовые и гелевые устройства для накопления энергии. Срок их эксплуатации составляет 10 - 15 лет.

Избыточный ток поглощает резистор. Для преобразования постоянного напряжения в переменное используют инверторы.

Производительность солнечной батареи зависит от угла ее наклона и стороны света, в которую она направлена. Так, максимальный результат будет от такого размещения устройства:

  • на юг под углом в 30° - эффективность 100%,
  • на юго-восток/юго-запад под углом 30° - 93%,
  • на восток/запад под углом - 93°.

Преимущества и эффективность автономных устройств

Покупают солнечные батареи для дачи, частного дома, отелей в курортных городах. Пользователи отмечают ряд их конкурентных преимуществ:

  • неисчерпаемость источника энергии,
  • общедоступность в любой местности,
  • экологическая безопасность,
  • бесшумность системы,
  • длительный срок службы до 25 лет,
  • государственная поддержка развития альтернативных источников электроэнергии в Европейских странах,
  • возможность монтажа дополнительных панелей для расширения системы,
  • малая вероятность поломки,
  • бесплатность самой энергии,
  • автономность системы.

Недостатки солнечных батарей для дома

Использование солнечных батарей сопровождается рядом недостатков:

  • высокая стоимость системы,
  • необходимость разового вклада большой суммы,
  • низкая производительность по сравнению с традиционными источниками питания,
  • необходимость места для размещения дополнительных комплектующих,
  • длительный срок окупаемости,
  • необходимость постоянного ухода,
  • проблемы утилизации батарей,
  • вероятность кражи дорогостоящего оборудования,
  • неэффективность в зимнюю, туманную и пасмурную пору.

Когда солнечные батареи целесообразны

Стоимость автономного энергоснабжения зависит от ее мощности и производительности. И чем она больше, тем меньше цена единиц ее составляющих.

Мощные солнечные батареи можно купить от 330 до 530 у.е. Для того, чтобы обеспечить электроэнергией дом на 4 человека потребуется вложиться на 15 - 25 тыс. у.е.

В Западной Европе спрос на альтернативные источники питания выше, поскольку там достаток людей выше. К тому же, есть возможность передачи накопленной энергии в общую сеть. При этом закупочная цена со стороны государства выше, чем тарифы при потреблении.

Целесообразно использовать мощность солнечных батарей при недостатке электроэнергии в регионе. Например, в курортном городе, где в «сезон» вводятся ограничения потребления.

Или же дом находится вдали от источника питания. И прокладка сети проводов дороже, чем стоимость батарей.

Лучше использовать энергию солнца, когда ее поступление не закрывают туманы и плохая погода. Например, на юге страны на возвышенности.

Для большей эффективности солнечной батареи следуйте инструкции установки, которая идет от производителя.

Режимы автономного электроснабжения

При выборе системы солнечного источника питания, необходимо учитывать максимальную силу, требуемую от нее. Она вычисляется суммированием мощностей всех бытовых инструментов и других электропотребителей. Также надо определить среднесуточную норму. Она зависит от режима автономности от общей сети.

Полная замена привычного источника питания, сопровождается отключением от городского электроснабжения. Требуемое количество мощности определяется по показателям счетчика за предыдущие периоды. При этом целесообразно учитывать возможных будущих электрических потребителей, задел на которые лучше сделать заранее. Обычно необходимо не менее 600 кВт в месяц для обеспечения дома на 3 - 4 человека.

При частичном электроснабжении, основная мощность идет от сети, остальная - от солнечных батарей. Приборы, устройства и системы, требующие больше 2 кВт/ч или 5 кВт/сутки остаются на традиционном источнике питания. Например, пол с подогревом, электрический бойлер, стиральная машина, обогреватель, утюг. Для такого режима потребуется 2 - 2,5 кВт/ч.

Умеренное электроснабжение меняет привычный стиль жизни. Емкие работы, как большая стирка, выполняются периодически 1 - 2 раза в месяц. В период высокой активности солнца. Нагрев воды также ограничивается до почасовой подачи. Для системы необходимо 150 кВт в месяц при возможном среднем потреблении энергии в 4 - 6 кВт/ч. Пиковая мощность может достигать 10 кВт/ч.

При базовом режиме используется 100 кВт в месяц. Хозяева находятся в состоянии экономии энергии, постоянно контролируют включение света и других потребителей тока. Работы, требующие большой мощности, проводятся до обеда. Чтобы до вечера аккумулятор накопил достаточное количество заряда.

Аварийный режим используется в экстренных ситуациях и в течение нескольких дней. После, предполагается восстановление привычного уровня электроснабжения от сети. Используется для обеспечения основных надобностей жителей дома. Среднее потребление энергии в сутки не превышает 2 кВт при пиковом значении в 6 кВт/ч.

После определения уровня требуемой энергии можно приступать к выбору конкретной системы солнечных батарей.

Выбор панелей солнечных батарей

Солнечные батареи имеют такие характеристики:

  • размер,
  • материал изготовления,
  • мощность,
  • напряжение номинальное и при пиковой мощности,
  • ток при максимальной мощности,
  • сила тока при коротком замыкании,
  • диапазон рабочей температуры,
  • срок эксплуатации.

При выборе фотоэлементов необходимо учитывать все вышеперечисленные показатели.

Для достижения необходимого уровня напряжения, панели параллельно соединяются в блоки. Важно понимать, что для объединения используются однотипные элементы. Но, если выбор между большой батареей или парой маленьких, то лучше отдать предпочтение первому варианту. Поскольку в нем отсутствуют дополнительные соединения, что увеличивает надежность конструкции.

Обычно размеры панелей составляют 1 - 2 м² при мощности в 220 - 250 Вт.

Современные батареи изготавливают из кремния.

Сколько стоит солнечная батарея зависит от ее типа. Фотопанели бывают моно- и поликристаллические. Первые, отличаются большей эффективностью на уровне 17,5% при сравнительном показателе в 15% аналога. Но их стоимость выше. Но в готовой конструкции при пересчете получаемой энергии на затраты, стоимость 1 Ватт приблизительно равна. Срок эксплуатации панелей одинаковый. А вот активность солнца отличается не постоянством в разные периоды года. Поэтому предпочтительней приобретение монокристаллических фотоэлементов.

Номинальное напряжение является показателем, на который рассчитано устройство в условиях нормальной работы. При этом максимальное - выше на 5 - 10 %.

В случае с солнечными батареями отдайте предпочтение 24-х вольтовым панелям. Больший показатель встречается редко. А устройства на 12 В предназначены для малых систем. Их обычно используют по архитекторским соображениям, когда ограничено пространство под батарею.

Установка способна работать при определенной температуре. Оптимальным решением является диапазон от -40°С до +90°С.

По отзывам потребителей, солнечные батареи исправно функционируют в течение 20 - 25 лет. При этом их эффективность снижается на 7 - 8 % каждые 10 лет.

Выбор контроллера и инвертора

Контроллер монтируется между солнечной батареей и аккумулятором. Он управляет уровнем напряжения, идущего от фотопанелей, в зависимости от уровня заряда накопителя энергии. Так при 100% накопления, предупреждается перезаряд отключением подачи напряжения в аккумулятор.

Дорогостоящие технологии отслеживают изменение входящих потоков и балансируют их. Так достигается максимально возможная продуктивность батарей в любой период суток и времени года. Контроллеры Maximum Power Point Tracking целесообразно использовать в больших системах. А при обеспечении энергией частного дома достаточно упрощенной модели. Например, типа PWM.

Такие устройства при уровне заряда аккумулятора от 80% уменьшают напряжение солнечной батареи и поддерживают его. Для сравнения контроллеры ON/OFF, которые являются самым дешевым аналогом, просто отключают систему.

Также важно, чтобы контролирующий блок мог компенсировать температуру и предполагал выбор типа аккумуляторной батареи.

Производители солнечных батарей при отказе от контроллера рекомендуют постоянно измерять вольтметром заряд аккумулятора. И при необходимости вручную отключать систему. Поскольку при перезаряде уменьшается срок службы накопителя.

Инвертор преобразует постоянное напряжение в переменное. Показатель входного напряжения должен соотноситься с мощностью устройства. Так при его силе в 600 Вт достаточно U = 24 В, и соответственно 48 В при большей мощности.

Если говорить о видах инвертора, то меньше всего хлопот доставит синусоидальное устройство.

Косвенным показателем является вес оборудования. Поскольку трансформатор отличается значительной массой, то условно на 100 Вт идет 1 кг инвертора. И поэтому качественный преобразователь в 1000 Вт весит 8 - 10 кг.

Номинальная выходящая мощность должна равняться силе всех электрических потребителей.

Выбор аккумуляторов

Аккумулятор стоит выбирать, исходя из количества энергии, которое он будет накапливать. Для этого определяется суточная потребность в энергии на разные потребители. При этом делается корректировка в дополнительные 10% на потери преобразования в инверторе.

Если солнечные батареи будут автономным источником питания, то важно максимальное возможное количество заряда аккумулятора. А при резервном или аварийном режиме системы необходимо отдавать предпочтение аккумуляторам с большим сроком службы.

Стартейные батареи нуждаются в постоянном обслуживании и используются при малой силе системы. Гелевые аналоги не так требовательны в уходе и способны накапливать больше энергии. Герметичные и заливные аккумуляторы обеспечивают длительное время работы при высоких мощностях. AGM используются преимущественно для резервного режима энергосбережения.

При одинаковых характеристиках, лучшими реальными показателями будет обладать более тяжелый аналог.

Обслуживание солнечной батареи

Солнечные батареи требуют большего ухода, чем стационарная сеть. Их поверхность надо систематически очищать от загрязнений. Таких как, птичий помет, пыль, следы от осадков. Так как загрязненные панели поглощают меньше солнечной энергии.

Для чистки достаточно помыть их потоком воды из шланга. А для снятия снега использовать палку по типу старой швабры с резиновой прослойкой.

Также необходимо обрезать ветки деревьев, которые кидают тень на поверхность батарей. В идеале лучше, чтобы в прилежащей территории дома высоких насаждений не было вовсе.

Два раза в год проверяйте состояние креплений системы. При необходимости смените их.